Skill Representation and Supervision in Multi-Task RL

Karol Hausman

Google Brain

In collaboration with

USC
Why multi-task reinforcement learning?
Supervised learning: generalization

- **Training set**
- **Test set**

- **Television**
- **Cat**
- **Car**

- **Training**
- **Test**

- **Training labels**
Single-task deep RL: generalization

training set

training set

reward

training labels

training

test

test set

training set
Multi-task deep RL: generalization

training set

training

reward task 1
reward task 2
reward task 3
training labels

test set

test
Single-task deep RL: resets

[Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning, Chebotar*, Hausman*, Zhang*, et al., 2017]
Multi-task deep RL: resets

[Supervision via Competition: Robot Adversaries for Learning Tasks, Pinto, et al., 2017]
Single-task deep RL: rewards
Multi-task deep RL: rewards

[Hindsight Experience Replay, Andrychowicz, et al., 2017]
Why not multi-task reinforcement learning?
Multi-task deep RL

Challenges

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills
- optimization of multiple tasks (conflicting gradients, gradient magnitudes)
- data imbalance issues (harder easier tasks, good exploration in all of them)
- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Multi-task deep RL

Challenges

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills
- optimization of multiple tasks (conflicting gradients, gradient magnitudes)
- data imbalance issues (harder easier tasks, good exploration in all of them)
- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Multi-task deep RL

Skill Representation and Reusability

● task specifications, what constitutes a task, how to represent a skill?
● reuse of already-learned skills

Supervision and Efficiency

● multiple skills - multiple pains: rewards, setups, etc.
● efficient sequencing of skills at test time
Multi-task deep RL

Skill Representation and Reusability

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills

Supervision and Efficiency

- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Skill representation

[Visual Reinforcement Learning with Imagined Goals, Pong et al. 2018]

[Progressive Growing of GANs for Improved Quality, Stability, and Variation, Karras et al. 2018]
Latent space in images and policies

Images

Policies
Robot skill embeddings

main idea: learn multiple re-usable skills and their skill embedding

embedding can represent different solutions for every task:
Robot skill embeddings

main idea: learn multiple re-usable skills and their skill embedding

embedding can represent different solutions for every task:
Robot skill embeddings

training:

observations

robot/policy

environment

task ID

embedding

$p(z|t)$

embedding

$q(z|a, s^H)$

states history

a, s^H

[Learning an embedding space for reusable robotic skills, Hausman et al.]
Robot skill embeddings

\[\pi(z|s) \]

observations

\[\pi(a|z, s) \]

robot/policy

equation

environment

Embedding states

Embedding history

Learning an embedding space for reusable robotic skills, Hausman et al.
Robot skill embeddings - multi-task learning

skills: push

![Image of robot skill push]

Time: 00:08.51
Reward: 0.189
Cumulative: 142

lift

![Image of blank frame]

transfer: push around a wall

![Image of robot skill push around a wall]

Time: 00:02.28
Reward: 0.129
Cumulative: 24.5

![Image of robot skill lift]

Time: 00:06.28
Reward: 0.137
Cumulative: 71.6
Robot skill embeddings - multi-task learning

skills: lift on a rail push on a table

transfer: lift and then push
Robot skill embeddings - sim2real transfer

Learn in real

Learn in sim

[Scaling simulation-to-real transfer by learning composable robot skills
Julian, et al., 2018]

[Zero-Shot Skill Composition and Simulation-to-Real Transfer by
Learning Task Representations, He, at al., 2018]
Robot skill embeddings - sim2real transfer
Multi-task deep RL

Skill Representation and Reusability

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills

Supervision and Efficiency

- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Multi-task deep RL

Skill Representation and Reusability

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills

Supervision and Efficiency

- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Supervision

[Collective robot reinforcement learning with distributed asynchronous guided policy search, Yahya et al. 2017]

[Better Language Models and Their Implications, OpenAI Blog, 2019]

[Diversity is all you need, Learning Diverse Skills without a Reward Function, Eysenbach, 2018]
Efficiency

~100 years of experience

[Learning Dexterous In-Hand Manipulation, OpenAI et al. 2018]

~1 hour of experience

[SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning, Zhang et al. 2019]
Global vs Behavior-Specific Dynamics Models
Dynamics-Aware Unsupervised Discovery of Skills (DADS)

main idea: use empowerment to simultaneously optimize for skills and their specific dynamics

mutual information objective:

\[
I(s'; z|s) \geq E_s E_z E_{p(s'|s,z)} \left[\log \frac{q_\phi(s'|s,z)}{p(s'|s)} \right] \\
\approx E_s E_z E_{p(s'|s,z)} \left[\log \frac{q_\phi(s'|s,z)}{\sum_{i=1}^L q_\phi(s'|s,z_i)} \right] + \log L
\]

[Dynamics-Aware Unsupervised Discovery of Skills, Sharma, et al. 2018]
Dynamics-Aware Unsupervised Discovery of Skills (DADS)
Dynamics-Aware Unsupervised Discovery of Skills (DADS)
Dynamics-Aware Unsupervised Discovery of Skills (DADS)
Multi-task deep RL

Skill Representation and Reusability

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills

Supervision and Efficiency

- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Multi-task deep RL

Challenges

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills
- optimization of multiple tasks (conflicting gradients, gradient magnitudes)
- data imbalance issues (harder easier tasks, good exploration in all of them)
- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
Future Work
Multi-task deep RL

Challenges

- task specifications, what constitutes a task, how to represent a skill?
- reuse of already-learned skills
- optimization of multiple tasks (conflicting gradients, gradient magnitudes)
- data imbalance issues (harder easier tasks, good exploration in all of them)
- multiple skills - multiple pains: rewards, setups, etc.
- efficient sequencing of skills at test time
- and many more...
Learning an Embedding Space for Transferable Robot Skills, ICLR 2018

K. Hausman, T. Springenberg, Z. Wang, N. Heess, M. Riedmiller

Dynamics-Aware Unsupervised Discovery of Skills, NeurIPS 2019 Submission

A. Sharma, S. Gu, S. Levine, V. Kumar, K. Hausman