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I. INTRODUCTION

Occupancy grid maps are among the most common rep-
resentations of the environment when dealing with range
sensors [1]. Typically, each grid cell stores the information
about whether it is occupied or free in a binary form. In a dif-
ferent, slightly richer representation, each voxel contains the
probability of being occupied. In the main body of literature
occupancy grids are used to store binary occupancies updated
by the log-odds method [2, 3]. Even though the log-odds-
based occupancy grids have enjoyed success in a variety
of applications, these methods, especially when coping with
noisy sensors, suffer from three main issues:

1) The occupancy of each voxel is updated independently
of the rest of the map. This is a well-known problem [2]
which has been shown to lead to conflicts between map
and measurement data. In particular, when the sensor
is noisy or has a large field of view there is a clear
coupling between voxels that fall into the field of view
of the sensor.

2) The log-odds methods rely on the inverse sensor model
(ISM), which needs to be hand-engineered for each
sensor and a given environment.

3) In order to represent the voxel occupancy, each voxel
stores a single number. As a result, there is no consistent
confidence or trust value associated with it to help the
planner decide how reliable the estimated occupancy is.

In this paper, we propose a method that partially re-
laxes these assumptions, generates more accurate maps, and
provides a more consistent filtering mechanism than prior
approaches. The highlights and contributions of this work
are as follows:

1) The main assumption in traditional occupancy grid
mapping is (partially) relaxed. We take into account the
dependence between voxels in the measurement cone
at every step. Further, the proposed method relaxes the
binary assumption on the occupancy level and it is
capable of coping with maps where each voxel is only
partially occupied by obstacles.

2) We replace the ad-hoc inverse sensor model by a novel
“sensor cause model”, which is computed based on the
forward sensor model in a principled manner.

3) In addition to the most likely occupancy value for
each voxel, the proposed map representation contains
confidence values (e.g. variance) of voxel occupancies.
The confidence information is crucial for planning over
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grid maps. We incorporate the sensor model and its
uncertainties in characterizing the map accuracy.

4) While the majority of approaches that relax the
voxel-independence assumption are batch methods, our
method does not require logging of the data in an offline
phase. Instead, the map can be updated online as the
sensory data are received.

II. CONFIDENCE-RICH REPRESENTATION

For each voxel i we store the probability distribution of
occupancy mi. Here, the variable mi can be interpreted in
two ways:

1) In the more general setting, mi ∈ [0, 1] directly repre-
sents the occupancy level (the percentage of voxel i that
is occupied by obstacles.). The proposed method can
model continuous occupancy and relaxes the binary oc-
cupancy assumption in traditional occupancy mapping.

2) If the underlying true map is assumed to be a bi-
nary map (denoted by binm), the occupancy of the
i-th voxel binmi ∈ {0, 1} is distributed as Bernoulli
distribution binmi ∼ Bernoulli(mi). Hence, mi refers
to the parameter of the Bernoulli distribution. While
inverse sensor-based mapping methods store mi as a
deterministic value, we estimate mi probabilistically
based on measurements and store its pdf in each voxel.
Note that in this setting, binmi ∈ {0, 1}, where mi ∈
[0, 1] represents the occupancy probability, i.e., mi

k =
p(binmi = 1|z0:k, x0:k).

Problem description: Given the above-mentioned rep-
resentation, we aim at estimating m based on noisy
measurements by computing its posterior distribution. We
define three beliefs over the map: (1) full map belief
b̄mk = p(m|z0:k, x0:k), (2) marginal cell beliefs bm

i

k =
p(mi|z0:k, x0:k), and (3) the collection of marginals bmk =

(bm
i

k )Mi=1
1. Similar to ISM-based methods, for mapping we

maintain and update the collection of marginals bmk . To do
so, we derive the following items:

1) Ranging sensor model: Given the obstacles are de-
scribed by a stochastic map, we derive a ranging sensor
model, i.e., the probability of obtaining measurement z
given a stochastic map and robot location: p(zk|xk, bmk ).
This model will be utilized in the map update module.

2) Recursive density mapping: We derive a recursive
mapping scheme τ that updates the current density map
based on the last measurements

bm
i

k+1 = τm
i

(bmk , zk+1, xk+1). (1)

1More precisely, in these definitions the variable b refers to the set of
parameters that characterize the probability distributions. So, we will treat
b as a vector (deterministic or random depending on the context) in the rest
of the paper.



The fundamental difference with ISM-mapping is that
the evolution of the i-th voxel depends on other voxels
as well. Note that the input argument to τm

i

is the
collection of all voxel beliefs bm, not just the i-th voxel
map bm

i

.
Overall, this method relaxes the voxel independence and

the binary occupancy assumptions of the ISM-based map-
ping.

III. RANGE-SENSOR MODELING

In this section, we model a range sensor when the environ-
ment representation is a stochastic map. We focus on passive
ranging sensors like stereo cameras, but the discussion can
easily be extended to active sensors too.

Ranging pixel: Let us consider an array of ranging
sensors (e.g., disparity pixels). We denote the camera center
by xcam, the 3D location of the i-th pixel by v, and the
ray emanating from xcam and passing through v by x =
(xcam, v). Let r denote the distance between the camera
center and the closest obstacle to the camera along ray x.
In stereo camera range r is related to the measured disparity
z as:

z = r−1fdb (2)

where, f is camera’s focal length and db is the baseline
between two cameras on the stereo rig. In the following,
we focus on a single pixel v and derive the forward sensor
model p(z|x, bm).

Pixel cone: Consider the field of view of pixel v.
Precisely speaking, it is a narrow 3D cone with apex at x
and boundaries defined by pixel v. Also, for simplicity one
can consider just a ray x going through camera center x and
the center of pixel v. Pixel cone Cone(x) refers to the set of
voxels in map m that fall into this cone (or lie on ray x).
We denote this set by C = Cone(x).

Fig. 1. The measurement cone formed by two red lines represents the field
of view of pixel v. The disparity measurement on pixel v can be caused by
light bouncing off from any of the voxels (here the red voxel) in the pixel
cone and reaching the image plane.

Local vs global indices: For a given ray x, we order the
voxels along the ray from the closest to the camera to the
farthest from the camera. Notation-wise, il ∈ {1, · · · , ‖C‖}
denote the local index of a voxel on ray x. Function ig =
g(il, x) returns the global index ig of this voxel in the map.

Cause variables: The disparity measurement on pixel v
could be the result of light bouncing off any of voxels in
the cone C = Cone(x) (see Fig. 1). Therefore, any of these
voxels are a potential cause for a given measurement. In
the case that the environment map is perfectly known, one
can pinpoint the exact cause by finding the closest obstacle
to the camera center. But, when the knowledge about the

environment is partial and probabilistic, the best one can
deduce about causes is a probability distribution over all
possible causes in the pixel cone C = Cone(x). These causes
will play an important role (as hidden variables) in deriving
sensor model for stochastic maps.

Cause probability: To derive the full sensor model, we
need to reason about which voxel was the cause for a given
measurement. For a voxel c ∈ C(x) to be the cause, two
events need to happen: (i) Bc, which indicates the event of
light bouncing off voxel c and (ii) Rc, which indicates the
event of light reaching the camera from voxel c.

p(c|bm)=Pr(Bc, Rc|bm)=Pr(Rc|Bc, bm)Pr(Bc|bm) (3)

Bouncing probability: To compute the bouncing prob-
ability, we rely on the fact that Pr(Bc|mc) = mc (by the
definition). Note that Pr(Bc|mc, bm) = Pr(Bc|mc).

Pr(Bc|bm) =

∫ 1

0

Pr(Bc|mc, bm)p(mc|bm)dmc

=

∫ 1

0

mcbm
c

dmc = Emc = m̂c

Reaching probability: For the ray emanating from voxel
c to reach the image plane, it has to go through all voxels
on ray x between c and sensor. Let cl denotes local index of
voxel c along the ray x, i.e., cl = g−1(c, x), then we have:

Pr(Rc|Bc, bm) = (1− Pr(Bg(cl−1,x)|bm)) (4)

Pr(Rg(cl−1,x)|Bg(cl−1,x), bm)

=

cl−1∏
l=1

(1− Pr(Bg(l,x)|bm))

=

cl−1∏
l=1

(1− m̂g(l,x))

IV. CONFIDENCE-AUGMENTED GRID MAP

In this section, we derive the recursive mapping algorithm
described in Eq. (1). We derive the mapping algorithm τ
that can reason not only about the occupancy at each cell,
but also about the confidence level of this value.

To compute the belief of the i-th voxel, denoted by
bm

i

k = p(mi|z0:k, x0:k), we bring the cause variables into
formulation. As shown in [4], we can compute the belief as
follows:

p(mi|z0:k, x0:k) = (αimi + βi)p(mi|z0:k−1, x0:k−1) (5)

where

αi =

il−1∑
clk=1

p(ck|bmk−1, zk, xk) (6)

+ (1− m̂i)−1
|C(x)|∑

clk=il+1

p(ck|bmk−1, zk, xk)

βi = (m̂i)−1p(ck|bmk−1, zk, xk) (7)

− (1− m̂i)−1
|C(x)|∑

clk=il+1

p(ck|bmk−1, zk, xk)



In a more compact form, we can rewrite Eq. (5) as:

bm
i

k+1 = τ i(bmk , zk+1, xk+1). (8)

Sensor cause model: The proposed machinery gives rise
to the term
p(ck|z0:k, x0:k) = p(ck|bmk−1, zk, xk), which is referred to as
Sensor Cause Model (SCM) in this paper. As opposed to
the inverse sensor model in traditional mapping that needs
to be hand-engineered, the SCM can be derived from the
forward sensor model in a principled way as follows. η′ is
the normalization constant.

p(ck|z0:k, x0:k) = p(ck|bmk−1, zk, xk) (9)

=
p(zk|ck, xk)p(ck|bmk−1, xk)

p(zk|bmk−1, xk)

= η′p(zk|ck, xk)p(ck|bmk−1, xk)

= η′p(zk|ck, xk)m̂ck
k−1

clk−1∏
j=1

(1− m̂g(j,x)
k−1 ),∀ck ∈ C(xk)

The complete mapping algorithm is recapped in Alg. 1.
For more details on these results, see [4].

Algorithm 1: Confidence-rich grid mapping
input : Current map belief bk, Current observation zk,
current robot measurement ray xk

output : Updated map belief bk+1

Procedure : bk+1 =Update(bk, zk, xk)
1 Find Vray voxels on the ray xk;
2 Compute SCM using Eq. (9);
3 foreach vi ∈ Vray do
4 Compute αi, βi (Eqs. (6), (7));
5 Update voxel belief (Eq. (5));

6 return bk+1;

V. RESULTS

In this section, we demonstrate the performance of the
proposed method and compare it with commonly used map-
ping methods. More details of the simulation setup can be
found in [4].

sensor std dev 0.25s 0.5s 1s 2s 3s

log-odds MAE 0.346 0.348 0.351 0.358 0.376
GPOM MAE 0.421 0.468 0.468 0.468 0.468
CRM MAE 0.289 0.299 0.323 0.355 0.365
log-odds Ic 17.340 18.609 17.665 18.862 19.243
GPOM Ic 10.167 10.172 12.964 10.212 10.490
CRM Ic 0.056 2.040 6.100 5.418 4.575

Fig. 2. Mean Absolute Error (MAE) and inconsistency Ic with γ =
1 (Eq. 10) of log-odds mapping, GPOM and the proposed method under
different sensor model noise levels (right), where s is the voxel size (0.06m).

For the sensing system, we simulate a ranging sensor
with 60 omnidirectional depth sensors spanning over a
field-of-view of 360◦ and reaching up to a range of 1m.
Measurements are corrupted by zero-mean Gaussian noise
with 0.06m std. deviation, i.e. one voxel length.

The occupancy maps resulting from the log-odds mapping,
GPOM and the proposed method are shown in the upper row
of Fig. 3, respectively.

First, we study the sensitivity of our method to different
sensor noises. The top rows of Table 2 show the map mean
absolute error (MAE) over time for different sensor noise
std deviations. The MAE is averaged over all the voxels
that were updated throughout the mapping process to best
show the improvement of the affected parts of the map.
For the same noise intensity, the proposed CRM method
shows a smaller error compared to the log-odds and Gaussian
Processes method.

It is worth emphasizing that reducing the map error is
only an ancillary benefit of our method. The main objective
of CRM is to provide a consistent confidence measure. This
consistency is particularly important for planning purposes.
A planner might be able to handle large errors as long as the
filter indicates that the estimates are unreliable (e.g. via their
variance). However, if the filter returns a wrong estimate with
low variance (i.e. it is confident that its estimate is correct,
while it is not), then the planner is prone to yield unsafe
results.

To quantify the inconsistency between the error and re-
ported variances, we utilize the following measure:

Ic =
∑
c

ramp(|ec| − γσc) (10)

where, ec and σc denote the estimation error and the std.
deviation of voxel c, respectively. γ decides what level of er-
ror is acceptable. The ramp function ramp(x) := max(0, x)
ensures that only inconsistent voxels (with respect to γσ)
contribute to the summation. Accordingly, Ic indicates how
much of the error signal is out of bound (i.e., how unreliable
the estimate is) over the whole map. As can be seen in the
middle row of Fig. 3, where voxels of high inconsistency
appear brighter, the log-odds based approach tends to be
overly confident in false estimates, compared to the other
methods. GP-based maps appear less clearer compared to
traditional occupancy grids with the advantage of a higher
consistency. However, as can be seen in the bottom right map
of Fig. 3, smaller obstacles are not mapped accurately and
pose dangerous areas of inconsistency.

Fig. 4(a) compares the inconsistency measure (Eq. 10)
over different γ thresholds for the presented mapping algo-
rithms. The log-odds approach overestimates the confidence
significantly more while GPOM and our method yield much
safer estimates.

While GPOM and the proposed approach yield similar
results in the ramp inconsistency comparison, it should be
noted that GPOM is computationally much more expensive
than occupancy grids [5]. Gaussian Processes rely on the
full set of measurement samples in order to predict the map
occupancy.

As an alternative measure of consistency, we compute the
Pearson correlation coefficient between the error and std. de-
viation (see Fig. 4(b)), which indicates that the std. deviation
generated by the proposed method is highly correlated with
the error, hence, it reliably describes the error’s behavior.



Fig. 3. Mapping results: CRM (left column), Log Odds (center column), GPOM (right column). Mean occupancies (top row), estimated standard deviation
(middle row), inconsistencies |ec| > σc for absolute voxel error |ec| and std σc (lower row). The mean occupancy GP map (top right) shows the GP
sample set where blue dots represent samples of free space and red dots represent occupied space. Measurement rays are discretized on the voxel grid for
GPOM, and appear with a random offset only for visualization purposes.
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Fig. 4. Left: evaluation of the ramp measure for inconsistency (Eq. 10) over different threshold values γ. Right: Pearson correlation coefficient between
the reported std deviation and the absolute error over all voxels at a given step.

VI. CONCLUSION

This paper proposes an alternative algorithm for grid
mapping, featuring a richer representation of the voxel occu-
pancy. The method runs online as measurements are received
and it enables mapping environments where voxels might
be partially occupied. The results show that the mapping
accuracy is approximately 10% better than the ISM-based
method and 30% better than Gaussian Processes maps, and
more importantly, according to the proposed consistency
measure, the confidence values are up to two orders of
magnitude more reliable.
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