
Segmentation of Cluttered Scenes through Interactive Perception

Christian Bersch, Dejan Pangercic, Sarah Osentoski, Karol Hausman, Zoltan-Csaba Marton, Ryohei Ueda,
Kei Okada, Michael Beetz

{pangercic, hausman, marton, beetz}@cs.tum.edu, {ueda, k-okada}@jsk.t.u-tokyo.ac.jp,
christian.bersch@googlemail.com, sarah.osentoski@us.bosch.com

Abstract— This paper describes a novel object segmentation
approach for autonomous service robots acting in human
living environments. The proposed system allows a robot to
effectively segment textured objects in cluttered scenes by
leveraging its manipulation capabilities. In this interactive
perception approach, 2D-features are tracked while the robot
actively induces motions into a scene using its arm. The
robot autonomously infers appropriate arm movements which
can effectively separate objects. The resulting tracked feature
trajectories are assigned to their corresponding object by using
a novel clustering algorithm, which samples rigid motion hy-
potheses for the a priori unknown number of scene objects. We
evaluated the approach on challenging scenes which included
occluded objects, as well as objects of varying shapes and sizes.
Finally, we also briefly describe and discuss our most recent
work towards the segmentation of textureless objects.

I. INTRODUCTION

A robot operating in human environments may be required
to perform complex dexterous manipulation tasks in a variety
of conditions. Service robots are likely to perform tasks that
require them to interact with objects that populate human
environments. For example, when emptying a shopping
bag the robot is likely to be confronted with a cluttered
unstructured scene like the examples shown in Fig. 1. In
order to successfully perform this task, the robot must be
able to detect the individual objects. Without the ability to
interact with the environment, it can be difficult to distinguish
between the object boundaries and texture patterns.

Similar to Katz et al. [1] and Bergstrom et al. [2], we
propose a system that uses a robot arm to induce motions
in a scene to enable effective object segmentation. Our
system employs a combination of the following techniques:
i) estimation of a contact point and a push direction of the
robot’s end effector by detecting the concave corners in the
cluttered scene, ii) feature extraction using features proposed
by Shi and Tomasi [3] and tracking using optical flow [4],
and iii) a novel clustering algorithm to segment the objects.

Evaluation was performed on several scenes with objects
of different shapes and sizes. Using a PR2 robot, we show
that our segmentation approach works very well on cluttered
scenes, even in the presence of occluded objects and is fully
sufficient for the robot to successfully grasp these objects.
Our system is available as opensource1 and can be deployed
on a robot equipped with a 2D-camera, a depth camera and
at least one arm.

This paper provides the following main contributions:

1http://www.ros.org/wiki/pr2_interactive_
segmentation

Fig. 1. Top: PR2 robot successfully picking-up the object after segmenting
in it in clutter using herein proposed object segmentation algorithm. Bottom:
the result of clustering of two highly cluttered scenes.

• A novel clustering algorithm for 2D-feature trajectories
that is based on sampling rigid motion hypotheses for
the a priori unknown number of scene objects;

• A heuristic for finding a contact point and a push
direction for the robot’s manipulator to induce distinct
motions to effectively separate the objects.

The paper is organized as follows: the next section reviews
related work, followed by a brief overview of the overall
system design (Sec. III). Estimation of a contact point and
a push direction is discussed in Sec. IV. Our algorithm for
clustering feature trajectories is explained in Sec. V. Finally,
we present our experimental results for several scenes in
Sec. VI and conclude discussing potential future work.

II. RELATED WORK

Research in passive perception has traditionally focused
on static images and segmented images based on a set of
features such as color [5] or higher order features like in
graph cut approaches [6].

This paper focuses on interactive scene segmentation by
adding robotic arm manipulation into the perception loop.

Tabletop Depth
Image

Detection of
Concave Corners,

Push Point and
Direction

Find Cluster
of Objects

Find Cluster
of Objects

Shi-Tomasi
Feature

Extraction

Optical Flow
Feature Tracking

Arm Navigation

Feature Trajectory
Clustering

FEATURE TRACKINGINPUT DATA CLUSTERING

Input
Image

Input
Point
Cloud

PUSH POINT/DIRECTION
ESTIMATION

PR2 Robot

Fig. 2. The system proposed in the paper consists of three main nodes: a node for estimating the initial contact point and the push direction, a node
that extracts 2D-features and tracks them while it moves the robot arm in the push direction, and finally an object clustering node that assigns the tracked
features to objects.

Segmentation of rigid objects from a video stream of objects
being moved by the robot has been addressed by Fitzpatrick
[7] and Kenney et al. [8]. These works are based on the
segmentation of objects from a video stream of a pre-planned
arm motion, use a simple Gaussian model of the color values
to infer the possible motion and a graph cut algorithm for
the final object segmentation. These approaches can deal with
textured as well as textureless objects. In contrast, our arm
motion is not pre-planned but adapts to the scene, we make
use of the 3D data to segment the object candidates from the
background and we use a novel clustering approach for the
segmentation of textured objects.

Katz et al. [1] address the problem of segmenting the
articulated objects. A Lucas-Kanade tracker and a set of
predictors (relative motion, short distance, long distance,
color, triangulation and fundamental matrix) are applied to
obtain rigid body hypotheses (in a form of a graph) and a
subsequent fixation point on the object. The latter is used to
segment an object based on color, intensity and texture cues.
The major limitation of this approach is the pre-planned arm
motion and the time needed to break the graph of object
hypotheses into the subgraphs using a min-cut algorithm.

Bergstrom et al [2] propose an approach to interactive
segmentation that requires initial labeling using a 3D seg-
mentation through fixation which results in a rough initial
segmentation. The robot interacts with the scene to dis-
ambiguate the hypotheses. Points in the motion space are
clustered using a two component Gaussian mixture model.
A limitation of the system seems to be the number of objects,
which was never greater than two in the experimental results.

Some approaches examine how the perturbations can be
planned to accumulate a sequence of motion cues. Gupta
et al. [9] use a set of motion primitives consisting of
pick and place, spread, and tumble actions to sort cluttered
piles of single-color objects. Euclidean clustering is used
in the distance and the color space to classify the scenes

as uncluttered, cluttered, or piled. Distance-based clustering
is limited as its success is subject to correctly selected
threshold. Color-based clustering may fail in the presence
of sudden lighting changes. Additionally, this approach can
not deal with heavily textured objects but could work well in
combination with ours. Chang et al. [10] present a framework
for interactive segmentation of individual objects with an
interaction strategy which allows for an iterative object se-
lection, manipulation primitive selection and evaluation, and
scene state update. The manipulation primitive selection step
uses a set of heuristics to maximize the push action, however,
it is unclear in how much this component contributes to
the successful segmentation of the objects. The manipulation
primitive evaluation step uses sparse correspondences from
the Lucas-Kanade optical flow tracker and computes a set
of transforms which are color matched against a dense point
cloud. A likelihood ratio of a target being a single item or
multiple items is determined based on the magnitude of the
transform motion and the percentage of dense point matches.
The major limitation compared to our work is that they do
not estimate corner contact points and do not accumulate the
transforms across the history of push actions.

III. SYSTEM ARCHITECTURE

The overall system schema is depicted in Fig. 2 and
consists of three main nodes. In the first, a 3D point cloud
of a static tabletop scene with household items is captured
by a depth camera (in this case using the Kinect). Points
belonging to the table are separated from points belonging
to the group of objects. The shape of the group of objects
is used to infer a contact point and a push direction for the
robot’s manipulator, as detailed in Sec. IV.

The node takes a sequence of 5-megapixel resolution
camera images of the scene, while the robot pushes its end
effector into the group of objects. Shi-Tomasi features are
extracted from the first camera frame and then tracked on
subsequent frames using optical flow. Once object motion

(a) (b)

(c) (d)
Fig. 3. Estimation of the contact point and the push direction. Top-left
figure: original scene. Top-right figure: depth image as seen from the virtual
camera positioned above the table. Bottom-left figure: Extracted contour of
the object cluster, convex corners are shown in green, concave corners in red.
Bottom-right figure: Direction of the dominant eigenvectors at the corners.

is detected, the robot continues moving its end effector
a predefined distance along the push direction. Since we
assume the robot arm is calibrated and we have a model
of its geometry, we employ a self-filter to exclude features
from the robot’s arm.

In the third node, the recorded feature trajectories are clus-
tered and assigned to object hypotheses, using the algorithm
described in Sec. V.

IV. ESTIMATION OF CONTACT POINT AND PUSH
DIRECTION

To perform object segmentation based on the individual
object motions induced by the robot, appropriate contact
points between the objects in the scene and the robot’s end
effector must be determined. Furthermore, the direction the
robot’s end effector should move must be chosen.

In this work, we consider a cluttered tabletop scene.
Since most commonly encountered household items have
convex outlines when observed from above, our system uses
local concavities in the 2D contour of an object group as
an indicator for boundaries between the objects. The robot
separates objects from each other by pushing its end effector
in between these boundaries. In the following, we describe
a heuristic to determine a contact point and a push direction
from depth-sensor data.

A. Contact Points from Concave Corners

We restrict the problem of finding a contact point to the
table plane. Our algorithm employs 2D-image processing
techniques to select contact point candidates. The table plane
is estimated from the depth-camera’s point cloud data using
RANSAC [11] and separated from the object points. The
remaining cloud points are projected into a virtual camera
view above the table. Since the projected cloud points are
sparse, we employ standard morphological operators and
2D-contour search [12] to identify a closed region, R,

corresponding to the group of objects. These steps are shown
in Fig. 3.

This region’s outer contour is then searched for strong
local directional changes by applying a corner detector and
subsequently the corners that are placed at local concavities
are selected. As in the Shi-Tomasi corner detector [3], we
compute the corner response for each pixel location p =
(px, py) based on the covariance matrix Z:

Z(p) =

[∑
S(p) I

2
x

∑
S(p) IxIy∑

S(p) IxIy
∑

S(p) I
2
y

]
, (1)

where Ix and Iy are the image gradients in x and y direction
and S(p) the neighborhood of p. A corner detector response
is recorded if min(λ1, λ2) > θ, where λ1,λ2 are the
eigenvalues of Z and θ is a given threshold. We also check
for roughly equal eigenvalues, i.e. λ1 ≈ λ2, ensuring that
there are strong gradient responses in two approximately
orthogonal directions. The local maxima of the smoothed
corner responses, are the detected corners illustrated as
circles in Fig. 3(c).

The concavity of each corner is estimated using a small
circular neighborhood. If a larger portion of this neighbor-
hood is inside R rather than outside, the corner must be a
concave part of R’s contour and is shown red in Fig. 3(c).
This method effectively handles noise in terms of directional
changes. Only the concave corners are considered contact
point candidates, unless no corner is found fulfilling above
concavity criterion. This method computes potential contact
points for only one group of objects, which the robot wants
to break up for segmentation. If the scene contains multiple
object groups the method will be applied to each group
separately.

B. Push Direction and Execution
The push direction at a corner is set to be parallel to

the eigenvector corresponding to the larger eigenvalue of the
covariance matrix Z(p) in Eq. 1. Intuitively, the dominant
eigenvector will align with the dominant gradient direction.
However, at a corner with two similar gradient responses
in two directions, the eigenvector becomes the bisector. As
only corners with roughly equal eigenvalues are chosen as
potential contact point candidates, the eigenvector of each
contact point candidate will bisect the angles of the contour
at the corner location. as shown in Fig. 3(d).

After determining the contact point candidates and the
push directions in the 2D table plane, the end effector is
moved within a constant small distance parallel to the table
plane. A contact point is below an object’s center of gravity
and close to the friction vector between the object and the
table, which avoids toppling over objects while pushing
them. When there are multiple contact point candidates,
the closest contact point to one of the end effectors and
physically reachable by the robot arm, is selected.

V. TEXTURED OBJECT SEGMENTATION USING FEATURE
TRAJECTORIES

Once the robot’s end effector touches the objects, the
resulting object motions are used to discriminate between

t = 0

A0

A1

t = 1

t = 2

push direction

Fig. 4. Feature trajectory clustering with rigid motion hypotheses: Each
feature i, depicted as a circle, is tracked over each time step t, forming a
trajectory of feature positions Si. After the robot finished its push motion,
two features u and v, depicted as red circles, are randomly selected. From
their trajectories Su and Sv , a rigid transformation At is calculated that
represents the rigid motion of u and v for each time increment from t to
t + 1. If u and v are on the same object, all other features will move
according the sequence of rigid transformations A = {At}T−1

t=0 , which
serves as the rigid motion hypotheses for an object (e.g. the blue box). As
the dark blue feature belongs to the same object as u and v, its motion can
be explained by this motion hypothesis, and will thus be assigned to the
same object. The motions of the dark green features located on a different
object are poorly modeled by this motion hypothesis, and thus trigger the
algorithm to create another motion hypothesis.

the different items on the table. Feature points are tracked
in the scene and the resulting feature point trajectories are
clustered. The clustering is based on the idea that features
corresponding to the same objects must follow the same
translations and rotations. The following assumptions with
respect to objects were made:

• Texture: Each item has some texture over most of
its surface, such that texture features can be used to
appropriately represent an object for tracking.

• Rigid Body: Each item is a rigid body and not subject
to deformations when interacting with the robot’s end
effector or other objects.

A. Feature Trajectory Generation using Optical Flow

We take advantage of the objects’ texture properties by
extracting i = 1...N Shi-Tomasi features [3] at the pixel
locations {pi,0}Ni=1 from the initial scene at time t = 0, i.e.
before an interaction with the robot took place. The feature
locations correspond to responses of the Shi-Tomasi feature
detector described in Sec. IV-A. When the robot’s end effec-
tor interacts with the object, a Lucas-Kanade tracker [13] is
used to compute the optical flow of the sparse feature set.
Using the optical flow, each feature’s position pi,t is recorded
over the image frames at time t = 0...T while the robot is
interacting with the objects. That is, for each successfully
tracked feature i, a trajectory Si = {pi,t}Tt=0 is obtained.

B. Randomized Feature Trajectory Clustering with Rigid
Motion Hypotheses

After calculating the set of all feature trajectories S ≡
{Si}Ni=1, the goal is to partition this set such that all features
belonging to the same object are assigned the same object
index ci ∈ {1, ..,K}, where the number of objects K is not
known a priori.

In other work on moving object segmentation, clustering
has been applied directly to optical flow vectors [14], [15].
However, in this context, where the robot induces the motion,
the objects tend to be subject to strong rotational motions,
which cause strongly non-collinear optical flow vectors. In-
stead, we take advantage of the rigid body property of objects
and assume that each subset of the features trajectories S
belonging to the same object k are subjected to the same
sequence of rigid transformation Ak ≡ {Ak,t}T−1t=0 , i.e. we
cluster features with respect to how well rigid transforma-
tions can explain their motions. As the objects only move on
the table plane, we restrict a possible rigid transformation
A to be composed of a 2D-rotation R, a 2D-translation
t and a scaling component s, i.e. A = s · [R|t]. The
scaling component compensates for the changes in size of
the projected objects in the camera image. The actual scaling
is not linear due to the perspective view, however, the error
resulting from this approximation is small as the objects are
displaced only in small amounts.

The clustering algorithm we propose is outlined in Alg. 1,
and combines a divisive clustering approach with RANSAC-
style model hypothesis sampling. At the core of the algorithm
(lines 4–12, see also Fig. 4), we randomly draw 2 tracked
features u,v and estimate a sequence of rigid transformations
A1 from their optical flow motions as first model hypothesis.
The feature trajectories Si that can be explained well by A1

are considered ”model inliers” and are removed from set of
feature trajectories. From the remaining set, again 2 features
are drawn to create a second model hypothesis A2 and all
inliers are removed. This process repeats until there are not
enough features left to create a new model hypothesis. This
process results in K hypotheses.

We bias the sampling of the 2 points (line 6) such that
drawn feature pairs are not likely to be further apart than
the typical object size. For this, the first feature u is chosen
uniformly and the probability p for choosing a feature i as
the second point is proportional to the normalized Gaussian
density function of the distance between pi and pu:

p(i) ∝ exp

(
−‖ pi − pu ‖22

2σ2

)
, (2)

where σ is set to half of the typical object size in pixels.
In line 7, a rigid transformation At is computed from

the trajectories Su and Sv at each time increment from t to
t+ 1. A 4-DOF transformation At can be computed directly
using geometrical considerations from the two 2D-feature
point locations pu and pv at t and t+ 1, such that:

pu,t+1 = Atpu,t and pv,t+1 = Atpv,t . (3)

Algorithm 1: Randomized feature trajectory clustering

1 Input: Set of feature trajectories S ≡ {Si}Ni=1 where
Si = {pi,t}Tt=0

2 Output: object cluster count K, object cluster
assignments c = [ci]

N
i=1 where ci ∈ {1, ..,K}

3 for m := 1 to M do
4 km := 1, Sm := S
5 while |Sm| ≥ 2 do
6 draw 2 random trajectories Su,Sv ∈ Sm
7 generate sequence of rigid transformations:

Akm
≡ {Akm,t}T−1t=0 from (Su,Sv)

8 for Sj in Sm do
9 sum squared residuals w.r.t to Akm

:
rkm,j :=

∑T−1
t=0 ‖pj,t+1 −Akm,tpj,t‖22

10 if rkm,j < THRESHOLD then
11 Sm := Sm \ {Sj}

12 km := km + 1

13 Km := km
14 for Si in S do
15 Assign each trajectory to best matching rigid

transformation sequence:
c∗m,i := argmin{1,..,km,..,Km−1} rkm,i, where
rkm,i :=

∑T−1
t=0 ‖pi,t+1 −Akm,tpi,t‖22

16 Select best overall matching set of rigid transform

sequences: m∗ := argminm
∑Km

km=1

∑
i rkm,i·1[c∗m,i

=km]∑
i 1[c∗m,i

=km]

17 Return: K := Km∗ , c :=
[
c∗m∗,i

]N
i=1

We use the sum of squared residuals over all time in-
crements, rk,i =

∑T−1
t=0 ‖pi,t+1 −Ak,tpi,t‖22, as a measure

of how well a feature trajectory Si fits a transformation
sequence Ak, where each residual is the difference vector
between the actual feature location pi,t+1 and Ak,tpi,t, the
feature location predicted by Ak,t. This measure is used
to discriminate between inliers and outliers for the model
generation process (line 10), as well as for the best assign-
ment c∗i of a trajectory to a model hypothesis (line 15). Note
that the final assignment may not necessarily correspond to
the model hypothesis for which the trajectory was an inlier
if a later generated hypothesis explains its motions better.
Furthermore, using a model to predict the features’ motions
at each time step, as compared to considering only the total
movement induced by the robot, is effective at discriminating
between objects that start or stop moving at different time
steps during the robot interaction.

As each trajectory pair that is used for the model hy-
pothesis generation is chosen in a randomized fashion, it
can happen that a pair of features is chosen such that they
are not on the same object. This can cause an erroneous
partitioning process of the feature trajectory set, resulting
in wrong model hypotheses. However, this problem can be
overcome with a high probability by sampling from the
whole hypotheses generation process M -times, where each
set of model hypotheses is indexed by the iteration m in
Alg. 1. This is explained in detail in Sec. V-C. We choose the

best m according to the score function (line 16), which is the
sum of summed squared residuals between each trajectory
and its best matching model hypothesis, normalized by the
number of feature trajectories assigned to this hypothesis.
This measure thus favors sets of hypotheses that predict a
smaller number of objects and where the number of features
per object is roughly equal. Often erroneous hypotheses are
only supported by few outlier features and are suppressed.

C. Trajectory Clustering Complexity Analysis

Instead of sampling M -times the trajectory model gener-
ation process, one could generate a model hypothesis for all(
N
2

)
≈ N2

2 possible feature pairs, as done in quality-threshold
clustering. For a small maximal number of objects we have
shown that K, M can be small such that the computational
complexity of our algorithm is much lower. We leave out the
analysis in the paper for the sake of brevity.

VI. EXPERIMENTS

A. Experimental Setup

Our system was deployed on Willow Garage’s PR2 robot.
Depth images were taken from a Kinect sensor mounted on
the robot’s head and the PR2’s built-in 5-megapixel camera
was used for capturing images for feature extraction and
tracking (See Fig. 1).

B. Segmentation of Objects in Cluttered Scenes

We evaluated our system on eight tabletop scenes with
the cluttered background shown in Fig. 5. For each scene,
the original setup of objects, the detected contact point
candidates and push directions, and the feature clusters after
the first push cycle are shown in the respective row. The
scene images are depicted in color even though the tracking
uses features extracted from gray scale images.

For each scene we evaluated the effect on the segmentation
outcome that pushing corner-based contact points and push
directions had as compared to pushing randomly into objects
in the scene. Random pushing was implemented in the way
that we first compute the contour of the object group and
the minimum enclosing circle using functions provided by
OpenCV library. We choose the point to push by randomly
sampling the points on the contour whereas the direction of
the push is estimated towards the center of the enclosing
circle. In the corner-based pushing experiments we also
evaluated the correctness of detected contact points and push
directions. After capturing the initial scene, the PR2 moved
its gripper along the push direction until one or more objects
were successfully segmented or we reached a maximum 10
number of pushes. After each 1cm of arm travel a new
picture was taken for optical flow tracking of the feature
set detected in the first frame.

For each of the scenes we carried out three segmentation
runs for both corner-based pushing and random pushing and
present the averaged results for three runs in Fig. 6. In every
run the success of the segmentation was inspected visually
by the human operator and the object was removed from the

Fig. 5. Test scenes 1 to 8 from left to right. Top row: original scenes, middle row: contact point estimation, bottom row: segmentation after the first
push cycle. Please note, that successfully segmented objects were removed from the scene and the contact point estimation and segmentation cycle were
repeatedly executed.

Fig. 6. Results on the segmentation of objects depicted in Fig. 5 using random vs. corner-based pushing. The tabular (upper) part of the figure denotes the
average number of pushes over 3 runs needed to segment the respective object in the respective scene. Number 10 (maximum number of pushes allowed)
means the robot failed to segment the object. The same statistics is also depicted as a bar chart in the bottom part of the Figure for clarity. X-axis represents
the scene and the object number, Y-axis the number of pushes.

scene by the operator upon the successful segmentation 2.
In all 24 runs for the corner-based pushing all the contact
points and the push directions were successfully chosen and
executed. As shown in Fig. 6 an informative, corner-based
pushing results in a faster and more reliable segmentation
of objects. Using random pushing, there were 10 runs in
which the robot failed to segment the whole scene (total
of 26 unsegmented objects). For the corner-based pushing
we only had 3 unsegmented scenes and total of 10 non-
segmented objects, while exerting 0.6 pushes less on average
as in the case of random pushing. Across all runs using using
corner-based pushing 89% of all objects were segmented
successfully. The most frequent source of failures for the
random pushing is depicted in the bottom of Fig. 7 where

2Note that the scenes included several objects impossible to be grasped
with only one PR2’s arm or without a motion planner. We thus present
grasping of objects from scene 8 in a proof-of-concept manner only (see
Sec. VI-C)

the push motion was induced such that all objects moved
rigidly with respect to each other.

The segmentation of the scenes took 1.047 seconds on
average to compute, which also demonstrates that our algo-
rithm is suitable for real world settings.

C. Grasping

We also ran a grasping experiment on the scene 8 (Fig.5).
In this experiment, we use low-quality image from the Kinect
for the segmentation and an associated point cloud for the
calculation of the object pose. To compute the latter we
take the set of 3D points corresponding to the the set of
2D features from the successfully segmented cluster and
apply an Euclidean clustering to remove possible outliers.
We then compute the centroid to obtain the object position
and then use the Principle Component Analysis to compute
the orientation. The result of this experiment is presented

a video accompanying this submission. For high resolution
please refer to: http://youtu.be/4VVov6E3iiM.

D. Discussion

Fig. 7. Failure cases exemplified. In the left-top scene the ”black pepper”
object became occluded by the robot arm. In the right-top scene the features
on the semi-transparent object were tracked unsuccessfully. Bottom row:
failed segmentation from the random pushing experiment where the robot
pushed objects such that they all moved rigidly with respect to each other

To exemplify some of the failed cases we would like to
direct reader’s attention to Fig. 7. One failure was caused
by unsuccessful tracking of the features through the image
sequence, for instance when the robot’s arm occluded ini-
tially detected features (e.g. pepper box in the left scene). A
similar effect was observed, when an object was rotated due
to the robot interaction and features on its vertical surface
were occluded by the object itself. In the right scene, a
semi-transparent and a reflective object was used. The failure
was caused because the features were lost during tracking or
they moved entirely inconsistently as the reflection pattern
changed.

VII. TEXTURELESS OBJECT SEGMENTATION

As pointed throughout this paper, the presented approach
relies on the assumption of textured objects with Lambertian
surfaces. In this section we report about our latest work with
an aim to segment textureless objects using the very same
randomized feature trajectory clustering algorithm listed in
1. While the current state of this work comprises of an al-
ternative feature selection and tracking only, our preliminary
results show promise for the robust and repeatable clustering
as well (See Fig. 8, bottom). In a nutshell, we employ 3D
line point cloud and 3D corner point cloud features (See

Fig. 8, top) which we track using a particle filter. Both parts
are compactly described below.

A. Extraction of 3D Line and Corner Point Clouds

In order to obtain a 3D line point cloud we first find
object edge candidates in the cluttered scene using curvature
values computed in the input point cloud from Kinect sensor.
Next we fit a line model to the object edge candidates
using RANSAC algorithm [11] and finally pad the line with
neighboring points on the object within a certain radius
(5cm). 3D corner point clouds are determined using the 3D
variant of the Harris corner detector as implemented in Point
Cloud Library3 and padded with neighboring points on the
object within a certain radius (5cm) as well. Padding for both
features is necessary in order to guarantee computation of a
better likelihood function needed by the tracker as explained
in the next section.

B. Particle Filtering-based Tracking

The feature point clouds extracted above are then passed
to the particle filter-based tracker as reference models. The
tracker itself consists of four steps: i) above described ref-
erence model selection, ii) pose update and re-sampling, iii)
computation of the likelihood and iv) weight normalization.
In the pose update step we use a ratio between a constant
position and a constant velocity motion model which allows
us to achieve an efficient tracking with a lesser number of the
particles. In the re-sampling phase we utilize Walkers Alias
Method [16]. The likelihood function of the hypotheses in
the third step is computed based on the similarity between
the nearest points pair of the reference point cloud and the
input data. Similarity is defined as a product between a term
depending on the points pair’s euclidean distance and a term
depending on points pair’s match in the HSV color space.
To obtain the model’s weight we finally sum over likelihood
values for every points pair in the reference model. Such
likelihood function assures a combined matching of model’s
structure and visual appearance. In the final, normalization
step we normalize the previously computed model weight by
applying a relative normalization as described in [17]. The
real-time operation of the algorithm is made possible through
various optimization techniques such as downsampling of
the point clouds, openMP parallelization and KLD-based
sampling [18] to select the optimal number of particles.

C. Results

We evaluated the robustness of the extraction and tracking
of the 3D line point cloud and 3D corner point cloud features
on the sequence of two textureless objects shown in the
top part of Fig. 8 and video4. In bottom part of Fig. 8 we
plot the relative distances over time between the features
on one object and features on both objects respectively. The
distance functions plotted in red and blue clearly show that
the distance between the features on one object remains
approximately the same while it changes significantly for the

3pointclouds.org
4http://youtu.be/oasorD8ZssE

Fig. 8. Top: Two textureless objects and extracted features. Bottom:
Evaluation of the change of relative distances (in m) between the features
on above two objects during tracking. The incline of distance function at
the measurement 170 reflects the movement of the white object while the
incline at measurement 280 the movement of the blue object.

features on the different objects as depicted by the green and
the yellow plot which is exactly suitable for our clustering
algorithm. While these initial results are promising, we are
aware that there is a myriad of issues we will have to tackle
to achieve the desired robustness: from making the tracker
more accurate, inferring the actual dense model of the object
needed for e.g. grasping, to integrating it with the 2D feature-
based tracker discussed in Sec. V, etc.

VIII. CONCLUSIONS AND FUTURE WORK

We presented an interactive perception system suitable
for the segmentation of objects in cluttered scenes for the
purpose of mobile manipulation. Integrated in the system are
two novel and steady algorithmic contributions: randomized
clustering of 2D-feature trajectories based on sampling rigid
motion hypotheses and the estimation of a contact point and
a push direction for the robot’s manipulator to induce distinct
motions that enable the clustering. We evaluated the system
on a set of challenging cluttered scenes and successfully
segmented them in more than 89% of cases. The results
show applicability of our system for objects of various sizes,
shapes and surface. We also show early results of our work
towards the segmentation of textureless object using particle
filter-based 3D point cloud feature tracking. In the future we

plan to improve the latter and to integrate an arm motion and
grasp planner [19] which will enable the robot to perform
robust grasping and deal with more complex scenes.

REFERENCES

[1] D. Katz and O. Brock, “Interactive segmentation of articulated objects
in 3d,” in Workshop on Mobile Manipulation at ICRA, 2011.

[2] N. Bergström, C. H. Ek, M. Bjrkman, and D. Kragic, “Scene un-
derstanding through interactive perception,” in In 8th International
Conference on Computer Vision Systems (ICVS), Sophia Antipolis,
September 2011.

[3] J. Shi and C. Tomasi, “Good features to track,” in 1994 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’94),
1994, pp. 593 – 600.

[4] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision (ijcai),” in Proceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI ’81),
April 1981, pp. 674–679.

[5] J. Bruce, T. Balch, and M. M. Veloso, “Fast and inexpensive color
image segmentation for interactive robots,” in Proceedings of the 2000
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’00), vol. 3, October 2000, pp. 2061 – 2066.

[6] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, pp. 1124–1137, September
2004.

[7] P. Fitzpatrick, “First contact: an active vision approach to segmenta-
tion,” in IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),
2003.

[8] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for
manipulation in unstructured environments,” in Proceedings of the
2009 IEEE international conference on Robotics and Automation, ser.
ICRA’09, 2009.

[9] M. Gupta and G. S. Sukhatme, “Using manipulation primitives for
brick sorting in clutter,” International Conference on Robotics and
Automation (ICRA), 2012.

[10] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” International Conference on Robotics and Automation
(ICRA), 2012.

[11] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[12] S. Suzuki and K. Abe, “Topological structural analysis of digitized
binary images by border following,” Computer Vision, Graphics, and
Image Processing, vol. 30, no. 1, pp. 32–46, 1985.

[13] J. Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade
Feature Tracker: Description of the algorithm,” Jean-YvesBouguet,
2002.

[14] J. Klappstein, T. Vaudrey, C. Rabe, A. Wedel, and R. Klette, “Moving
object segmentation using optical flow and depth information,” in
Proceedings of the 3rd Pacific Rim Symposium on Advances in Image
and Video Technology, ser. PSIVT ’09. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 611–623.

[15] T. Brox and J. Malik, “Object segmentation by long term analysis of
point trajectories,” in Proceedings of the 11th European conference on
Computer vision: Part V, ser. ECCV’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 282–295.

[16] A. J. Walker, “An efficient method for generating discrete random
variables with general distributions,” ACM Trans. Math. Softw., vol. 3,
no. 3, pp. 253–256, Sept. 1977.

[17] P. Azad, D. Munch, T. Asfour, and R. Dillmann, “6-dof model-based
tracking of arbitrarily shaped 3d objects,” in ICRA, 2011.

[18] D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in
Neural Information Processing Systems 14. MIT Press, 2001.

[19] M. Dogar and S. Srinivasa, “Push-grasping with dexterous hands: Me-
chanics and a method,” in Proceedings of 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2010), October
2010.

