
Combining Model-Based and Model-Free Updates
for Deep Reinforcement Learning

Yevgen Chebotar∗†, Karol Hausman∗†, Marvin Zhang∗‡, Gaurav Sukhatme†, Stefan Schaal†, Sergey Levine‡
†Department of Computer Science, University of Southern California, Los Angeles, CA, USA

‡Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, USA

I. INTRODUCTION

The ability to learn motor skills autonomously is one of the
main requirements for deploying robots in unstructured real-
world environments. The goal of reinforcement learning (RL)
is to learn such skills through trial and error, thus avoiding
tedious manual engineering. However, real-world applications
of RL have to contend with two often opposing requirements:
data-efficient learning and the ability to handle complex,
unknown dynamical systems that might be difficult to model
explicitly. Real-world physical systems, such as robots, are
typically costly and time consuming to run, making it highly
desirable to learn using the lowest possible number of real-
world trials. Model-based methods tend to excel at this [5], but
suffer from significant bias, since complex unknown dynamics
cannot always be modeled accurately enough to produce
effective policies. Model-free methods have the advantage of
handling arbitrary dynamical systems with minimal bias, but
tend to be substantially less sample-efficient [9, 17]. Can we
combine the efficiency of model-based algorithms with the
final performance of model-free algorithms in a method that
we can practically use on real-world physical systems?

Many prior methods that combine model-free and model-
based techniques achieve only modest gains in efficiency or
performance [6, 7]. In this work, we aim to develop a method
in the context of a specific policy representation: time-varying
linear-Gaussian controllers. The structure of these policies
provides us with an effective option for model-based updates
via iterative linear-Gaussian dynamics fitting [10], as well as
a simple option for model-free updates via the path integral
policy improvement (PI2) algorithm [19].

Although time-varying linear-Gaussian (TVLG) policies
are not as powerful as representations such as deep neural
networks [13, 14] or RBF networks [4], they can represent
arbitrary trajectories in continuous state-action spaces. Fur-
thermore, prior work on guided policy search (GPS) has
shown that TVLG policies can be used to train general-
purpose parameterized policies, including deep neural network
policies, for tasks involving complex sensory inputs such as
vision [10, 12]. This yields a general-purpose RL procedure
with favorable stability and sample complexity compared to
fully model-free deep RL methods [16].

The main contribution of this paper is a procedure for
optimizing TVLG policies that integrates both fast model-

∗ equal contribution

Fig. 1. Real robot tasks used to evaluate our method. Left: The hockey task
which involves discontinuous dynamics. Right: The power plug task which
requires high level of precision. Both of these tasks are learned from scratch
without demonstrations.

based updates via iterative linear-Gaussian model fitting and
corrective model-free updates via the PI2 framework. The
resulting algorithm, which we call PILQR, combines the effi-
ciency of model-based learning with the generality of model-
free updates and can solve complex continuous control tasks
that are infeasible for either linear-Gaussian models or PI2 by
itself, while remaining orders of magnitude more efficient than
standard model-free RL. We demonstrate that this approach
can be integrated into GPS to train deep neural network
policies and present empirical results both in simulation and
on a real robotic platform. Our real-world results demonstrate
that our method can learn complex tasks, such as hockey and
power plug plugging (see Figure 1), each with less than an
hour of experience and no user-provided demonstrations.

II. PRELIMINARIES

The goal of policy search methods is to optimize the
parameters θ of a policy p(ut|xt), which defines a prob-
ability distribution over actions ut conditioned on the sys-
tem state xt at each time step t of a task execution. Let
τ = (x1,u1, . . . ,xT ,uT) be a trajectory of states and actions.
Given a cost function c(xt,ut), we define the trajectory cost as
c(τ) =

∑T
t=1 c(xt,ut). The policy is optimized with respect

to the expected cost of the policy
J(θ) = Ep [c(τ)] =

∫
c(τ)p(τ)dτ ,

where p(τ) is the policy trajectory distribution given the
system dynamics p (xt+1|xt,ut)

p(τ) = p(x1)

T∏
t=1

p (xt+1|xt,ut) p(ut|xt) .

A particular policy class that allows us to employ an effi-
cient model-based update is the TVLG controller p(ut|xt) =
N (Ktxt + kt,Σt). In this section, we present the model-
based and model-free algorithms that form the constituent
parts of our hybrid method. The model-based method is an
extension of a KL-constrained LQR algorithm [10], which we
shall refer to as LQR with fitted linear models (LQR-FLM).
The model-free method is a PI2 algorithm with per-time step
KL-divergence constraints that is derived in previous work [2].

A. Model-Based Optimization of TVLG Policies

The model-based method we use is based on the iterative
linear-quadratic regulator (iLQR) and builds on prior work [10,
18]. Hereby, we briefly outline the method.

We use samples to fit a TVLG dynamics model
p(xt+1|xt,ut) = N (fx,txt+ fu,tut,Ft) and assume a twice-
differentiable cost function. Tassa et al. [18] showed that we
can compute a second-order Taylor approximation of our Q-
function and optimize this with respect to ut to find the
optimal action at each time step t. To deal with unknown
dynamics, Levine & Abbeel [10] impose a KL-divergence
constraint between the updated policy p(i) and previous policy
p(i−1) to stay within the space of trajectories where the
dynamics model is approximately correct. We similarly set
up our optimization as

min
p(i)

Ep(i) [Q(xt,ut)] s.t. Ep(i)
[
DKL(p

(i)‖p(i−1))
]
≤ εt . (1)

The main difference from Levine & Abbeel [10] is that
we enforce separate KL constraints for each linear-Gaussian
policy rather than a single constraint on the induced trajectory
distribution (i.e., compare Eq. (1) to the first equation in
Section 3.1 of Levine & Abbeel [10]).

LQR-FLM has substantial efficiency benefits over model-
free algorithms. However, as our experimental results in Sec-
tion V show, the performance of LQR-FLM is highly depen-
dent on being able to model the system dynamics accurately,
causing it to fail for more challenging tasks.

B. Policy Improvement with Path Integrals

PI2 is a model-free RL algorithm based on stochastic
optimal control. A detailed derivation of this method can be
found in [19].

Each iteration of PI2 involves generating N trajectories by
running the current policy. Let S(xi,t,ui,t) = c(xi,t,ui,t) +∑T
j=t+1 c(xi,j ,ui,j) be the cost-to-go of trajectory i ∈

{1, . . . , N} starting in state xi,t by performing action ui,t
and following the policy p(ut|xt) afterwards. Then, we can
compute probabilities P (xi,j ,ui,j) for each trajectory starting
at time step t

P (xi,t,ui,t) =
exp

(
− 1
ηt
S(xi,t,ui,t)

)
∫
exp

(
− 1
ηt
S(xi,t,ui,t)

)
dui,t

. (2)

The probabilities follow from the Feynman-Kac theorem ap-
plied to stochastic optimal control [19]. The intuition is that the
trajectories with lower costs receive higher probabilities, and
the policy distribution shifts towards a lower cost trajectory
region. The costs are scaled by ηt, which can be interpreted
as the temperature of a soft-max distribution. This is similar to
the dual variables ηt in LQR-FLM in that they control the KL
step size, however they are derived and computed differently.
After computing the new probabilities P , we update the
policy distribution by reweighing each sampled control ui,t
by P (xi,t,ui,t) and updating the policy parameters by a
maximum likelihood estimate [2].

To relate PI2 updates to LQR-FLM optimization of a
constrained objective, which is necessary for combining these
methods, we can formulate the following theorem.

Theorem 1. The PI2 update corresponds to a KL-constrained
minimization of the expected cost-to-go S(xt,ut) =∑T
j=t c(xj ,uj) at each time step t

min
p(i)

Ep(i) [S(xt,ut)] s.t. Ep(i−1)

[
DKL

(
p(i)‖ p(i−1)

)]
≤ ε,

where ε is the maximum KL-divergence between the new policy
p(i) (ut|xt) and the old policy p(i−1) (ut|xt).

Proof: The Lagrangian of this problem is given by

L (p(i), ηt)=Ep(i)[S(xt,ut)]+ηtEp(i−1)

[
DKL

(
p(i)‖ p(i−1)

)
−ε
]

By minimizing the Lagrangian with respect to the new policy
we can find its relationship to the old policy:

p(i)(ut|xt)∝p(i−1)(ut|xt)Ep(i−1)

[
exp

(
− 1

ηt
S(xt,ut)

)]
(3)

This gives us an update rule for p(i) that corresponds exactly
to reweighing the controls from the previous policy p(i−1)

based on their probabilities P (xt,ut) described earlier. The
temperature ηt now corresponds to the dual variable of the
KL-divergence constraint.

III. INTEGRATING MODEL-BASED UPDATES INTO PI2

A. Two-Stage PI2 update

To integrate a model-based optimization into PI2, we can
divide it into two steps. Given an approximation ĉ(xt,ut)
of the real cost c(xt,ut) and the residual cost c̃(xt,ut) =
c(xt,ut)− ĉ(xt,ut), let Ŝt = Ŝ(xt,ut) be the approximated
cost-to-go of a trajectory starting with state xt and action
ut, and S̃t = S̃(xt,ut) be the residual of the real cost-to-go
S(xt,ut) after approximation. We can rewrite the PI2 policy
update rule from Eq. (3) as

p(i) (ut|xt)

∝ p(i−1) (ut|xt)Ep(i−1)

[
exp

(
− 1

ηt

(
Ŝt + S̃t

))]
∝ p̂ (ut|xt)Ep(i−1)

[
exp

(
− 1

ηt
S̃t

)]
, (4)

where p̂ (ut|xt) is given by

p̂ (ut|xt) ∝ p(i−1) (ut|xt)Ep(i−1)

[
exp

(
− 1

ηt
Ŝt

)]
(5)

Hence, by decomposing the cost into its approximation and
the residual approximation error, the PI2 update can be split
into two steps: (1) update using the approximated costs
ĉ(xt,ut) and samples from the old policy p(i−1) (ut|xt) to
get p̂ (ut|xt); (2) update p(i) (ut|xt) using the residual costs
c̃(xt,ut) and samples from p̂ (ut|xt).

B. Model-Based Substitution with LQR-FLM

We can use Theorem (1) to rewrite Eq. (5) as a constrained
optimization problem

min
p̂

Ep̂
[
Ŝ(xt,ut)

]
s.t. Ep(i−1)

[
DKL

(
p̂‖ p(i−1)

)]
≤ ε .

Thus, the policy p̂ (ut|xt) can be updated using any algorithm
that can solve this optimization problem. By choosing a model-
based approach for this, we can speed up the learning process
significantly. Model-based methods are typically constrained
to some particular cost approximation, however, PI2 can
accommodate any form of c̃ (xt,ut) and thus will handle
arbitrary cost residuals.

LQR-FLM solves the type of constrained optimization
problem in Eq. (1), which matches the optimization problem
needed to obtain p̂, where the cost-to-go Ŝ is approximated
with a quadratic cost and a linear-Gaussian dynamics model.1

We can thus use LQR-FLM to perform our first update, which
enables greater efficiency but is susceptible to modeling errors
when the fitted local dynamics are not accurate, such as in
discontinuous systems. We can use a PI2 optimization on the
residuals to correct for this bias.

C. Optimizing Cost Residuals with PI2

In order to perform a PI2 update on the residual costs-to-go
S̃, we need to know what Ŝ is for each sampled trajectory.
That is, what is the cost-to-go that is actually used by LQR-
FLM to make its update? The structure of the algorithm
implies a specific cost-to-go formulation for a given trajectory
– namely, the sum of quadratic costs obtained by running
the same policy under the TVLG dynamics used by LQR-
FLM. A given trajectory can be viewed as being generated
by a deterministic policy conditioned on a particular noise
realization ξi,1, . . . , ξi,T , with actions given by

ui,t = Ktxi,t + kt +
√

Σtξi,t , (6)

where Kt, kt, and Σt are the parameters of p(i−1). We can
therefore evaluate Ŝ(xt,ut) by simulating this deterministic
controller from (xt,ut) under the fitted TVLG dynamics and
evaluating its time-varying quadratic cost, and then plugging
these values into the residual cost.

1In practice, we make a small modification to the problem in Eq. (1) so
that the expectation in the constraint is evaluated with respect to the new
distribution p̂(xt) rather than the previous one p(i−1)(xt). This modification
is heuristic and no longer aligns with Theorem (1), but works better in practice.

Fig. 2. We evaluate on a set of simulated robotic manipulation tasks with
varying difficulty. Left to right, the tasks involve pushing a block, reaching
for a target, and opening a door in 3D.

In addition to the residual costs S̃ for each trajectory,
the PI2 update also requires control samples from the up-
dated LQR-FLM policy p̂ (ut|xt). Although we have the
updated LQR-FLM policy, we only have samples from the
old policy p(i−1) (ut|xt). However, we can apply a form
of the re-parametrization trick [8] and again use the stored
noise realization of each trajectory ξt,i to evaluate what the
control would have been for that sample under the LQR-FLM
policy p̂. The expectation of the residual cost-to-go in Eq. (4)
is taken with respect to the old policy distribution p(i−1).
Hence, we can reuse the states xi,t and their corresponding
noise ξi,t that was sampled while rolling out the previous
policy p(i−1) and evaluate the new controls according to
ûi,t = K̂txi,t + k̂t +

√
Σ̂tξi,t. This linear transformation on

the sampled control provides unbiased samples from p̂(ut|xt).
After transforming the control samples, they are reweighed
according to their residual costs and plugged into the PI2

update in Eq. (2).

IV. TRAINING PARAMETRIC POLICIES WITH GPS

PILQR offers an approach to perform trajectory optimiza-
tion of TVLG policies. In this work, we employ mirror descent
guided policy search (MDGPS) [15] in order to use PILQR
to train parametric policies, such as neural networks. Instead
of directly learning the parameters of a high-dimensional
parametric or “global policy” with RL, we first learn simple
TVLG policies, which we refer to as “local policies” p(ut|xt)
for various initial conditions of the task. After optimizing the
local policies, the optimized controls from these policies are
used to create a training set for learning the global policy πθ in
a supervised manner. Hence, the final global policy generalizes
across multiple local policies.

Using the TVLG representation of the local policies makes
it straightforward to incorporate PILQR into the MDGPS
framework. Instead of constraining against the old local TVLG
policy as in Theorem (1), each instance of the local policy is
now constrained against the old global policy

min
p(i)

Ep(i) [S(xt,ut)]s.t. Ep(i−1)

[
DKL

(
p(i)‖π(i−1)

θ

)]
≤ ε .

The two-stage update prfoceeds as described in Section III-A,
with the change that the LQR-FLM policy is now constrained
against the old global policy π(i−1)

θ .

V. EXPERIMENTAL EVALUATION

Our experiments aim to answer the following questions:
(1) How does our method compare to other trajectory-centric

0 200 400 600 800 1000 1200 1400 1600
samples

0.0

0.5

1.0

1.5

2.0
A
v
g
 f
in
a
l
d
is
ta
n
ce

PI2
LQR-FLM
PILQR

Fig. 3. Average final distance from the block to the goal on one condition
of the gripper pusher task. This condition is difficult due to the block being
initialized far away from the gripper and the goal area, and only PILQR is
able to succeed in reaching the block and pushing it toward the goal.

and deep RL algorithms in terms of final performance and
sample efficiency? (2) Can we utilize linear-Gaussian policies
trained using PILQR to obtain robust neural network policies
using MDGPS? (3) Is our proposed algorithm capable of learn-
ing complex manipulation skills on a real robotic platform? We
study these questions through a set of simulated comparisons
against prior methods, as well as real-world tasks using a PR2
robot. The performance of each method can be seen in our
supplementary video.2 Our focus in this work is specifically on
robotics tasks that involve manipulation of objects, since such
tasks often exhibit elements of continuous and discontinuous
dynamics and require sample-efficient methods, making them
challenging for both model-based and model-free methods.

A. Simulation Experiments

We evaluate our method on three simulated robotic manip-
ulation tasks, depicted in Figure 2 and discussed below:
Gripper pusher. This task involves controlling a 4 DoF arm
with a gripper to push a white block to a red goal area. The
cost function is a weighted combination of the distance from
the gripper to the block and from the block to the goal.
Reacher. The reacher task from OpenAI gym [1] requires
moving the end of a 2 DoF arm to a target position. This
task is included to provide comparisons against prior methods.
The cost function is the distance from the end effector to the
target. We modify the cost function slightly, since the original
task from OpenAI Gym uses an `2 norm, while we use a
differentiable Huber-style loss on the distance, which is more
typical for LQR-based methods [18].
Door opening. This task requires opening a door with a 6
DoF 3D arm. The arm must grasp the handle and pull the
door to a target angle, which can be particularly challenging
for model-based methods due to the complex contacts between

2https://sites.google.com/site/icml17pilqr

Fig. 4. Final distance from the reacher end effector to the target averaged
across 300 random test conditions per iteration. MDGPS with LQR-FLM,
MDGPS with PILQR, TRPO, and DDPG all perform competitively, however,
as the log scale for the x axis shows, TRPO and DDPG requires orders of
magnitude more samples. MDGPS with PI2 performs noticeably worse.

the hand and the handle, and the fact that a contact must be
established before the door can be opened. The cost function
is a weighted combination of the distance of the end effector
to the door handle and the angle of the door.

We first compare PILQR to LQR-FLM and PI2 on the
gripper pusher and door opening tasks. Figure 3 details
performance of each method on the most difficult condition
for the gripper pusher task. Both LQR-FLM and PI2 perform
significantly worse on the two more difficult conditions of this
task. While PI2 improves in performance as we provide more
samples, LQR-FLM is bounded by its ability to model the
dynamics, and thus predict the costs, at the moment when the
gripper makes contact with the block. Our method solves all
four conditions with 400 total episodes per condition and, as
shown in the supplementary video, is able to learn a diverse
set of successful behaviors including flicking, guiding, and
hitting the block. On the door opening task, PILQR trains
TVLG policies that succeed at opening the door from each
of four initial robot positions. While the policies trained with
LQR-FLM are able to reach the handle, they fail to open the
door.

Next we evaluate neural network policies on the reacher
task. Figure 4 shows results for MDGPS with each local
policy method, as well as two prior deep RL methods that
directly learn neural network policies: trust region policy op-
timization (TRPO) [17] and deep deterministic policy gradient
(DDPG) [13]. MDGPS with LQR-FLM and MDGPS with
PILQR perform competitively in terms of the final distance
from the end effector to the target, which is unsurprising given
the simplicity of the task, whereas MDGPS with PI2 is again
not able to make much progress. On the reacher task, DDPG
and TRPO use 25 and 150 times more samples, respectively,
to achieve approximately the same performance as MDGPS

https://sites.google.com/site/icml17pilqr

Fig. 5. Minimum angle in radians of the door hinge (lower is better)
averaged across 100 random test conditions per iteration. MDGPS with PILQR
outperforms all other methods we compare against, with orders of magnitude
fewer samples than DDPG and TRPO, which is the only other successful
algorithm.

with LQR-FLM and PILQR. For comparison, amongst pre-
vious deep RL algorithms that combined model-based and
model-free methods, SVG and NAF with imagination rollouts
reported using approximately up to five times fewer samples
than DDPG on a similar reacher task [6, 7]. Thus we can
expect that MDGPS with our method is about one order of
magnitude more sample-efficient than SVG and NAF. While
this is a rough approximation, it demonstrates a significant
improvement in efficiency.

Finally, we compare the same methods for training neural
network policies on the door opening task, shown in Figure 5.
TRPO requires 20 times more samples than MDGPS with
PILQR to learn a successful neural network policy. The other
three methods were unable to learn a policy that opens the
door despite extensive hyperparameter tuning.

B. Real Robot Experiments

To evaluate our method on a real robotic platform, we use
a PR2 robot (see Figure 1) to learn the following tasks:
Hockey. The hockey task requires using a stick to hit a puck
into a goal 1.4m away. The cost function consists of two parts:
the distance between the current position of the stick and a
target pose that is close to the puck, and the distance between
the position of the puck and the goal. The puck is tracked
using a motion capture system. Although the cost provides
some shaping, this task presents a significant challenge due
to the difference in outcomes based on whether or not the
robot actually strikes the puck, making it challenging for prior
methods, as we show below.
Power plug plugging. In this task, the robot must plug a
power plug into an outlet. The cost function is the distance
between the plug and a target location inside the outlet. This
task requires fine manipulation to fully insert the plug.

0 50 100 150 200
samples

0

1000

2000

3000

4000

5000

A
v
g
 c
o
st

PI2
LQR-FLM
PILQR

in the goal

Fig. 6. Single instance comparison of the hockey task performed on the real
robot. Costs lower than the dotted line correspond to the puck entering the
goal.

Both of these tasks have difficult, discontinuous dynamics
at the contacts between the objects, and both require a high
degree of precision to succeed. In contrast to prior works [3]
that use kinesthetic teaching to initialize a policy that is
then finetuned with model-free methods, our method does
not require any human demonstrations. In all of the real
robot experiments, policies are updated every 10 rollouts
and the final policy is obtained after 20-25 iterations, which
corresponds to mastering the skill with less than one hour of
experience.

In the first set of experiments, we aim to learn a policy
that is able to hit the puck into the goal for a single position
of the goal and the puck. The results of this experiment are
shown in Figure 6. In the case of the prior PI2 method [19], the
robot was not able to hit the puck. Since the puck position has
the largest influence on the cost, the resulting learning curve
shows little change in the cost over the course of training. The
policy to move the arm towards the recorded arm position that
enables hitting the puck turned out to be too challenging for
PI2 in the limited number of trials used for this experiment. In
the case of LQR-FLM, the robot was able to occasionally hit
the puck in different directions. However, the resulting policy
could not capture the complex dynamics of the sliding puck or
the discrete transition, and was unable to hit the puck toward
the goal. The PILQR method was able to learn a robust policy
that consistently hits the puck into the goal. Using the step
adjustment rule, the algorithm would shift towards model-free
updates from the PI2 method as the TVLG approximation of
the dynamics became less accurate. Using our method, the
robot was able to get to the final position of the arm using
fast model-based updates from LQR-FLM and learn the puck-
hitting policy, which is difficult to model, by automatically
shifting towards model-free PI2 updates.

In our second set of hockey experiments, we evaluate
whether we can learn a neural network policy using the

0 50 100 150 200 250 300
samples

−620

−615

−610

−605

−600

−595

−590

−585
A
v
g
 c
o
st

PI2
LQR-FLM
PILQR

plugged in

Fig. 7. Single instance comparison of the power plug task performed on the
real robot. Note that costs above the dotted line correspond to executions that
did not actually insert the plug into the socket. Only our method (PILQR)
was able to consistently insert the plug all the way into the socket by the final
iteration.

MDGPS-PILQR algorithm that can hit the puck into differ-
ent goal locations. The goals were spaced 0.5m apart. The
strategies for hitting the puck into different goal positions
differ substantially, since the robot must adjust the arm pose to
approach the puck from the right direction and aim toward the
target. This makes it quite challenging to learn a single policy
for this task. We performed 30 rollouts for three different
positions of the goal (10 rollouts each), two of which were
used during training. The neural network policy was able to
hit the puck into the goal in 90% of the cases. This shows
that our method can learn high-dimensional neural network
policies that generalize across various conditions.

The results of the plug experiment are shown in Figure 7.
PI2 alone was unable to reach the socket. The LQR-FLM
algorithm succeeded only 60% of the time at convergence.
In contrast to the peg insertion-style tasks evaluated in prior
work that used LQR-FLM [11], this task requires very fine
manipulation due to the small size of the plug. Our method
was able to converge to a policy that plugged in the power
plug on every rollout at convergence. The supplementary video
illustrates the final behaviors of each method for both the
hockey and power plug tasks.3

VI. CONCLUSION

We presented an algorithm that combines elements of
model-free and model-based RL, with the aim of combining
the sample efficiency of model-based methods with the ability
of model-free methods to improve the policy even in situations
where the model’s structural assumptions are violated. We
further demonstrate that, although this algorithm is specific to
TVLG policies, it can be integrated into the GPS framework in
order to train arbitrary parameterized policies, including deep
neural networks.

3https://sites.google.com/site/icml17pilqr

REFERENCES

[1] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schul-
man, J., Tang, J., and Zaremba, W. OpenAI gym. arXiv preprint
arXiv:1606.01540, 2016.

[2] Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S.,
and Levine, S. Path integral guided policy search. In ICRA,
2017.

[3] Daniel, Christian, Neumann, Gerhard, Kroemer, Oliver, and
Peters, Jan. Learning sequential motor tasks. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on,
pp. 2626–2632. IEEE, 2013.

[4] Deisenroth, M., Rasmussen, C., and Fox, D. Learning to con-
trol a low-cost manipulator using data-efficient reinforcement
learning. In RSS, 2011.

[5] Deisenroth, M., Neumann, G., and Peters, J. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-2):
1–142, 2013.

[6] Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Continu-
ous deep Q-learning with model-based acceleration. CoRR,
abs/1603.00748, 2016.

[7] Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., and
Erez, T. Learning continuous control policies by stochastic value
gradients. In NIPS, 2015.

[8] Kingma, D. and Welling, M. Auto-encoding variational Bayes.
CoRR, abs/1312.6114, 2013.

[9] Kober, J., Bagnell, J., and Peters, J. Reinforcement learning in
robotics: a survey. International Journal of Robotic Research,
32(11):1238–1274, 2013.

[10] Levine, S. and Abbeel, P. Learning neural network policies with
guided policy search under unknown dynamics. In NIPS, 2014.

[11] Levine, S., Wagener, N., and Abbeel, P. Learning contact-rich
manipulation skills with guided policy search. In ICRA, 2015.

[12] Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. JMLR, 17(1), 2016.

[13] Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., and Wierstra, D. Continuous control with deep
reinforcement learning. In ICLR, 2016.

[14] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., and Riedmiller, M. Playing Atari with deep
reinforcement learning. In NIPS Workshop on Deep Learning,
2013.

[15] Montgomery, W. and Levine, S. Guided policy search via
approximate mirror descent. In NIPS, pp. 4008–4016, 2016.

[16] Montgomery, W., Ajay, A., Finn, C., Abbeel, P., and Levine, S.
Reset-free guided policy search: efficient deep reinforcement
learning with stochastic initial states. In ICRA, 2017.

[17] Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel, P.
Trust region policy optimization. In ICML, 2015.

[18] Tassa, Y., Erez, T., and Todorov, E. Synthesis and stabilization
of complex behaviors. In IROS, 2012.

[19] Theodorou, E., Buchli, J., and Schaal, S. A generalized path
integral control approach to reinforcement learning. JMLR, 11,
2010.

https://sites.google.com/site/icml17pilqr

	Introduction
	Preliminaries
	Model-Based Optimization of TVLG Policies
	Policy Improvement with Path Integrals

	Integrating Model-Based Updates into PI2
	Two-Stage PI2 update
	Model-Based Substitution with LQR-FLM
	Optimizing Cost Residuals with PI2

	Training Parametric Policies with GPS
	Experimental Evaluation
	Simulation Experiments
	Real Robot Experiments

	Conclusion

