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Abstract— We introduce a framework for learning regrasping
behaviors based on tactile data. First, we present a grasp
stability predictor that uses spatio-temporal tactile features
collected from the early-object-lifting phase to predict the grasp
outcome with a high accuracy. Next, the trained predictor is
used to supervise and provide feedback to a reinforcement
learning algorithm that learns the required grasp adjustments
based on tactile feedback. Our results gathered over more than
50 hours of real robot experiments indicate that the robot is able
to predict the grasp outcome with 93% accuracy. In addition,
the robot is able to improve the grasp success rate from 42%
when randomly grasping an object to up to 97% when allowed
to regrasp the object in case of a predicted failure.

I. INTRODUCTION

Autonomous grasping of unknown objects is a fundamen-
tal requirement for service robots performing manipulation
tasks in real world environments. Even though there has
been a lot of progress in the area of grasping, it is still
considered an open challenge and even the state-of-the-art
grasping methods may result in failures. Two questions arise
immediately: 1) how to detect these failures early, and ii) how
to adjust a grasp to avoid failure and improve stability.

Early grasp stability assessment is particularly important
in the regrasping scenario, where, in case of predicted failure,
the robot must be able to place the object down in the same
position in order to regrasp it later. In many cases, early
detection of grasping failures cannot be performed using a
vision system as they occur at the contact points and involve
various tactile events such as incipient slip. Recent develop-
ments of tactile sensors [1] and spatio-temporal classification
algorithms [2] enable us to use informative tactile feedback
to advance grasping-failure-detection methods.

In order to correct the grasp, the robot has to be able
to process and use the information on why the grasp has
failed. Tactile sensors are one source of this information.
Our grasp adjustment approach aims to use this valuable
tactile information in order to infer a local change of the
gripper configuration that will improve the grasp stability.
An example of a regrasping behavior is depicted in Fig. 1.

In this paper, we jointly address the problems of grasp-
failure detection and grasp adjustment, i.e. regrasping us-
ing tactile feedback. In particular, we use a failure de-
tection method to guide and self-supervise the regrasping
behavior using reinforcement learning. In addition to the
regrasping approach, we present an extensive evaluation of
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Fig. 1: Regrasping scenario: the robot partially misses the
object with one of the fingers during the initial grasp (left),
predicts that the current grasp will be unstable, places the
object down, and adjusts the hand configuration to form a
firm grasp of the object using all of its fingers (right).

a spatio-temporal grasp stability predictor that is used on a
biomimetic tactile sensor. This prediction is then used as a
reward signal that supervises the regrasping reinforcement
learning process.

The key contributions of our approach are: a) a regrasping
framework that employs policy learning based on spatio-
temporal tactile features, b) a high-accuracy grasp stability
predictor for a biomimetic tactile sensor c) a self-supervised
experimental setup that enables the robot to autonomously
collect large amounts of data, d) an extensive evaluation of
the grasp stability predictor and the learned regrasping be-
havior through more than 50 hours of real robot experiments.

II. RELATED WORK

The problem of grasp stability assessment has been ad-
dressed previously in various ways. Dang and Allen [3]
utilize tactile sensory data to estimate grasp stability. How-
ever, their approach does not take into account the temporal
properties of the data and uses the tactile features only from
one time step at the end of the grasping process. There have
also been other approaches that model the entire time series
of tactile data. In [4] and [5], the authors train a Hidden
Markov Model to represent the sequence of tactile data
and then use it for grasp stability assessment. The newest
results in the analysis of the tactile time series data for grasp
stability assessment were presented in [2]. The authors show
that the unsupervised feature learning approach presented in
their work achieves better results than any of the previously



mentioned methods, including [4] and [5]. In this work,
we show how the spatio-temporal tactile features developed
in [2] can be applied to the state-of-the-art biomimetic tactile
sensor, which enables us to better exploit the capabilities of
this advanced tactile sensor.

Biomimetic tactile sensors and human-inspired algorithms
have been used previously for grasping tasks. In [6], the au-
thors show an approach to control grip force while grasping
an object using the same biomimetic tactile sensor that is
used in this work. Veiga et al. [7] use the same sensor to learn
slip prediction classifiers and utilize them in the feedback
loop of an object stabilization controller. Su et al. [8]
present a grasping controller that uses estimation of various
tactile properties to gently pick up different objects using
a biomimetic tactile sensor. All of these works tackle the
problem of human-inspired grasping. In this work, however,
we focus on the regrasping behavior and grasp stability
prediction. We also compare the grasp stability prediction
results using the finger forces estimated by the method
from [8] to the methods described in this work.

Reinforcement learning has enjoyed success in many
different applications including manipulation tasks such as
playing table tennis [9] or executing a pool stroke [10].
Reinforcement learning methods have also been applied to
grasping tasks. Kroemer et al. [11] propose a hierarchical
controller that determines where and how to grasp an un-
known object. The authors use joint positions of the hand
in order to determine the reward used for optimizing the
policy. Another approach was presented by Montesano and
Lopes [12], where the authors address the problem of actively
learning good grasping points from visual features using
reinforcement learning. In this work, we present a differ-
ent approach to grasping using reinforcement learning, i.e.
regrasping. In addition, we use tactile-feature-based reward
function to improve the regrasping performance.

Tactile features have been rarely used in reinforcement
learning manipulation scenarios. Pastor et al. [10] use pres-
sure sensor arrays mounted on the robot’s fingers to learn
a manipulation skill of flipping a box using chopsticks.
Similarly to [10], Chebotar et al. [13] use dynamic movement
primitives and reinforcement learning to learn the task of
gentle surface scraping with a spatula. In both of these cases,
the robot was equipped with the tactile matrix arrays. In this
work, we apply reinforcement learning to the task of regrasp-
ing using an advanced biomimetic tactile sensor together
with state-of-the-art spatio-temporal feature descriptors.

The works most related to this paper have focused on
the problem of grasp adjustment based on sensory data.
Dang and Allen [3] tackles the regrasping problem by
searching for the closest stable grasp in the database of all the
previous grasps performed by the robot. A similar approach
is presented by [14], where the authors propose a grasp
adaptation strategy that searches a database for a similar
tactile sensing experience in order to correct the grasp.
The authors introduce an object-level impedance controller
whose parameters are adapted based on the current grasp
stability estimates. The grasp adaptation is focused on in-
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Fig. 2: The schematic of the electrode arrangements on the
BioTac sensor (left). Tactile image used for the ST-HMP
features (right). The X values are the reference electrodes.
The 19 BioTac electrodes are measured relative to these
4 reference electrodes. V1 and V2 are created by taking
an average response of the neighboring electrodes: V1 =
avg(E17, E18, E12, E2, E13, E3) and V2 = avg(El7, E18,
E15, ES, E13, E3).

hand adjustments rather than placing the object down and
regrasping it. The main differences between these approaches
and ours are twofold: i) we employ spatio-temporal features
and use tactile data from the beginning of the lifting phase
which enables us to achieve high grasp stability prediction
accuracy in a short time, and ii) we use reinforcement
learning with spatio-temporal features which is supervised by
the previously learned grasp stability predictor. This allows
us to learn the regrasping behavior in an autonomous and
efficient way.

III. GRASP STABILITY ESTIMATION

The first component of our regrasping framework is the
grasp stability predictor that provides early detection of grasp
failures. We use short sequences of tactile data to extract
necessary information about the grasp quality. This requires
processing tactile data both in the spatial and the temporal
domains. In this section, we first present the biomimetic
tactile sensor used in this work and how its readings are
adapted for the feature extraction method. To the best of
our knowledge, this is the first time that the spatio-temporal
tactile features are used for this advanced biomimetic tactile
sensor. Next, we describe the spatio-temporal method for
learning a sparse representation of the tactile sequence data
and how it is used for the grasp stability prediction.

A. Biomimetic tactile sensor

In this work, we use a haptically-enabled robot equipped
with 3 biomimetic tactile sensors - BioTacs [1]. Each BioTac
consists of a rigid core housing an array of 19 electrodes
surrounded by an elastic skin. The skin is inflated with an
incompressible and conductive liquid. When the skin is in
contact with an object, the liquid is displaced, resulting in
distributed impedance changes in the electrode array on the
surface of the rigid core. The impedance of each electrode
tends to be dominated by the thickness of the liquid between
the electrode and the immediately overlying skin. Since the
BioTac uses liquid for its core functionality, it is a very



difficult sensor to simulate. To the best of our knowledge,
there is no reliable simulation that is able to mimic the
sensor’s functionality.

In order to apply feature extraction methods from com-
puter vision, as described in the next section, the BioTac
electrode readings have to be represented as tactile images.
To form such a 2D tactile image, the BioTac electrode values
are laid out according to their spatial arrangement on the
sensor as depicted in Fig. 2.

B. Hierarchical Matching Pursuit

To describe a time series of tactile data, we employ a
spatio-temporal feature descriptor - Spatio-Temporal Hier-
archical Matching Pursuit (ST-HMP). We choose ST-HMP
features as they have been shown to have high performance
in temporal tactile data classification tasks [2].

ST-HMP is based on Hierarchical Matching Pursuit
(HMP), which is an unsupervised feature-extraction method
used for images [15]. HMP creates a hierarchy of several
layers of simple descriptors using a matching pursuit encoder
and spatial pooling.

To encode data as sparse codes, HMP learns a dictionary
of codewords using the common codebook-learning method
K-SVD [16]. Given a set of N H-dimensional observations
(e.g. image patches) Y = [y1,...,yn] € RHE*N, HMP
learns a M-word dictionary D = [dy, ... ,dy] € RE*M and
the corresponding sparse codes X = [11,...,2y] € RM*N
that minimize the reconstruction error between the original
and the encoded data:
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where || - || 7 is a Frobenius norm, x; are the sparse vectors,
||-]lo is a zero-norm that counts number of non-zero elements
in a vector, and K is the sparsity level that limits the number
of non-zero elements in the sparse codes.

The optimization problem of minimizing the reconstruc-
tion error can be solved in an alternating manner. First, the
dictionary D is fixed and the sparse codes are optimized:

H%in lys — Dxi||* s.t. ||lzillo < K.

Next, given the sparse code matrix X, the dictionary is
recomputed by solving the following optimization problem
for each codeword in the dictionary:

qwa—DXﬁww-MMb=L

The first step is combinatorial and NP-hard but there exist
algorithms to solve it approximately. HMP uses orthogonal
matching pursuit (OMP) [17] to approximate the sparse
codes. OMP proceeds iteratively by selecting a codeword
that is best correlated with the current residual of the
reconstruction error. Thus, at each iteration, it selects the
codewords that maximally reduce the error. After selecting a
new codeword, observations are orthogonally projected into
the space spanned by all the previously selected codewords.

The residual is then recomputed and a new codeword is
selected again. This process is repeated until the desired
sparsity level K is reached.

The dictionary optimization step can be performed using
a standard gradient descent algorithm.

C. Spatio-temporal HMP

In ST-HMP, the tactile information is aggregated both
in the spatial and the temporal domains. This is achieved
by constructing a pyramid of spatio-temporal features at
different coarseness levels, which provides invariance to
spatial and temporal deviations of the tactile signal. In the
spatial domain, the dictionary is learned and the sparse codes
are extracted from small tactile image patches. As the next
step, the sparse codes are aggregated using spatial max-
pooling. In particular, the image is divided into spatial cells
and each cell’s features are computed by max-pooling all the
sparse codes inside the spatial cell:
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where j € C; indicates that the image patch is inside
the spatial cell Cs and m is the dimensionality of the
sparse codes. The HMP features of each tactile image in the
time sequence are computed by performing max-pooling on
various levels of the spatial pyramid, i.e. for different sizes
of the spatial cells.

After computing the HMP features for all tactile images
in the time series, the pooling is performed on the temporal
level by constructing a temporal pyramid. The tactile se-
quence is divided in sub-sequences of different lengths. For
all sub-sequences, the algorithm performs max-pooling of the
HMP features resulting in a single feature descriptor for each
sub-sequence. Combined with spatial pooling, this results in
a spatio-temporal pooling of the sparse codes.

Finally, the features of all the spatio-temporal cells are
concatenated to create a single feature vector F'p for the
complete tactile sequence: Fp = [Ci1,...,Cgsr|, where S
is the number of the spatial cells and 7" is the number of
the temporal cells. Hence, the total dimensionality of the
ST-HMP descriptor is S x T' x M.

After extracting the ST-HMP feature descriptor from the
tactile sequence, we use Support Vector Machine (SVM)
with a linear kernel to learn a classifier for the grasp stability
prediction as described in [2]. The tactile sequences used
in this work consist of tactile data shortly before and after
starting to pick up a grasped object. This process is described
in more detail in Sec. V.

In this work, we also compare features extracted only
from tactile sensors with combinations of tactile and non-
tactile features, such as force-torque sensors, strain gages,
finger angles, etc. To achieve temporal invariance, we apply
temporal max-pooling to these features with the same tem-
poral pyramid as for the tactile features. By doing so, we can
combine tactile ST-HMP and non-tactile temporally pooled
features by concatenating their feature vectors.



IV. REINFORCEMENT LEARNING FOR REGRASPING

Once a grasp is predicted as a failure by the grasp stability
predictor, the robot has to place the object down and regrasp
it using the information acquired during the initial grasp.
In order to achieve this goal, we learn a mapping from the
tactile features of the initial grasp to the grasp adjustment.
The parameters of this mapping function are learned using
a reinforcement learning approach. In the following, we
explain how this mapping is computed. In addition, we
describe the policy search method and our approach to
reducing the dimensionality of the problem. Note that the
fact that we use tactile sensors to learn a policy necessitates
learning how to regrasp rather than how to grasp directly.

A. Mapping from tactile features to grasp adjustments

Similarly to the grasp stability prediction, we use the ST-
HMP features as the tactile data representation to compute
the adjustment of the unsuccessful grasp. In particular, we
use a linear combination of the ST-HMP features to compute
the change of the grasp pose. The weights of this combina-
tion are learned using a policy search algorithm described in
the next section.

Using multiple levels in the spatial and temporal pyramids
of ST-HMP increases the dimensionality of tactile features
substantially. This leads to a large number of parameters to
learn for the mapping function, which is usually a hard task
for policy search algorithms [18]. Therefore, we perform
principal component analysis (PCA) [19] on the ST-HMP
features and use only the largest principal components to
compute the mapping.

The grasp pose adjustment is represented by the 3-
dimensional change of the gripper’s position and 3 Euler
angles describing the change of the gripper’s orientation.
Each adjustment dimension is computed separately using the
largest principal components of the ST-HMP features:
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where w; ; are the weights of the tactile features ¢; and n
is the number of principal components.

B. Policy search for learning mapping parameters

The linear combination weights of the mapping from the
tactile features to the grasp adjustments w; ; are learned
using reinforcement learning. For that, all the combination
weights are concatenated to form a single parameter vector:

0= Wy, , Wanyeoo, Wyn)

We define the policy 7(6) as a Gaussian distribution over
0 with a mean p and a covariance matrix 3. In order to
find good regrasping candidates, the parameter vector 6 is
sampled from this distribution. In the next step, we compute
the reward R(0) by estimating the success of the adjusted

grasp using the grasp stability predictor described in Sec. III.
After a number of trials is collected, the current policy is op-
timized and the process repeats. For policy optimization we
use the relative entropy policy search (REPS) algorithm [20].
The main advantage of this method is that, in the process of
reward maximization, the loss of information during a policy
update is bounded, which leads to a better convergence.

The goal of REPS is to maximize the expected reward
J(m) of the policy 7 subject to bounded information loss
between the previous and updated policy. Information loss
is defined as the Kullback-Leibler (KL) divergence between
the two policies. Bounding the information loss limits the
change of the policy and hence, avoids sampling too far from
unexplored policy regions.

Let ¢(0) be the old policy and 7(0) be the new policy after
the policy update. Using this notation, we can formulate a
constrained optimization problem:
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where, as mentioned before, J(w) is the total expected
reward of using the policy m(0). The first constraint bounds
the KL-divergence between the policies with the maximum
information lost set to e. The second constraint ensures that
m(6) forms a proper probability distribution.

Solving the optimization problem with Lagrange multipli-
ers results in the following dual function:

g(n) :176+7710g/q(0) exp (Rff)> ae,

where the integral term can be approximated from the sam-
ples using the maximum-likelihood estimate of the expected
value. Furthermore, from the Lagrangian it follows that:

7(6) ox 4(8) exp (Rff)> |

Therefore, we are able to compute the new policy parameters
with a weighted maximum-likelihood solution. The weights
are equal to exp (R(0)/n), where the rewards are scaled by
the parameter 7. By decreasing n one gives larger weights
to the high-reward samples. An increase of 7 results in more
uniform weights. The parameter 7 is computed according to
the optimization constraints by solving the dual problem.

Given a set of policy parameters {61, ...,0y} and corre-
sponding episode rewards, the policy update rules for p and
3 can be formulated as follows [18]:
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with weights d; = exp (R(0)/n).
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Fig. 3: Left: Experimental setup used for learning the grasp
stability predictor and the regrasping behavior. If the object
falls out of the hand, it returns to its initial position due to the
convex shape of the bowl. Right: The novel object (on the
right) used for testing the regrasping behavior in comparison
to the original object (on the left).

V. EVALUATION AND DISCUSSION

In this section we describe the experimental setups and the
results obtained for both parts of the regrasping framework:
grasp stability prediction and the regrasping behavior learned
using reinforcement learning.

A. Evaluation of grasp stability prediction

1) Experimental setup: We evaluate our method on the
Barrett Arm manipulator and the Barrett hand equipped with
three BioTac sensors. For the grasping experiments, we use
a cylindrical object depicted in Fig. 3 on the left, whose
position is known in advance. In addition, we introduce a
bowl that is firmly attached to the table. The bowl is used to
bring the object up right if it falls out of the gripper during
the extensive shaking motions that are performed later in the
experiment. This modification enables us to fully automate
the learning process and let the robot run for more than 20
hours to autonomously learn the grasp stability predictor.

The experiment proceeds as follows. The robot reaches
for the object to perform a top grasp, which we refer to as
a nominal grasp. In order to achieve more variety in the
data, we generate subsequent grasps by adding white noise
to the nominal grasp. We refer to these grasps as random
grasps. The std. dev. of the white noise is £10deg in roll
and pitch of the gripper, £60deg in yaw, and +lcm in
all translational directions. These parameters are tuned such
that there is always at least one finger touching the object.
After approaching and grasping the object using the force
grip controller described in [8], the robot picks the object
up. To ensure that the grasp is stable the robot performs
a range of shaking motions by rapidly changing the end-
effector orientation by £15deg and position by +3cm in all
directions multiple times. If the object is still in the hand
after the shaking motions, we consider it to be a successful
grasp. The wrist-mounted force-torque sensor is used to
determine if the object is still in the hand at the end of the
experiment. We collected 1000 grasps, out of which 46%
resulted in failures and 54% succeeded. The data collected

Features

[ # of grasps [ Avg. Accuracy, % |

Electrodes 500 90.73
Finger angles 500 80.55
Strain gages 500 84.91
Hand orientation 500 74.00
Force-torque 500 69.63
BioTac finger forces 500 88.55
All features 500 91.09
All features 1000 93.00

TABLE I: Results obtained for various sensor modalities for
the grasp stability predictor using ST-HMP. The combination
of all modalities outperforms any other single modality.

throughout the grasp stability prediction experiments are
available online!' and described in detail in [21].

To extract tactile features, we use a temporal window of
650ms before and 650m s after starting picking up the object.
Our goal is to determine if the grasp is going to fail early in
the picking up phase. This way, we can stop the motion early
enough to avoid displacing the object, and thus, enable the
robot to perform regrasping. In this work, we concatenate
the tactile images from all three BioTacs as described in [2]
to form a single image for ST-HMP feature extraction. HMP
learns a dictionary of size M = 100 with the sparsity level
set to K = 4. The spatial pooling is performed with a 3
level pyramid: the image is divided in 1x1, 2x2 and 3x3 cell
grids, which results in S = (1 + 22 + 3%) = 14 spatial cells.
The temporal pyramid consists of 5 max-pooling levels: the
sequence is divided into 1, 2, 4, 8 and 16 parts. This results
inT = (1+24+4+8+16) = 31 temporal cells. In addition, in
order to take into account the signs of HMP features, which
are lost due to max-pooling on absolute values, we save the
feature vector elements with both positive and negative signs
as described in [22]. This doubles the size of the feature
descriptor. Hence, the total amount of the ST-HMP features
is SxT xMx2=14x31x 100 x 2 = 86800.

2) Results: To evaluate the grasp stability prediction, we
perform a 5-fold cross-validation on our data set by using
20% of the data as the test set. We compare the prediction
results using different ST-HMP features constructed from
different sensor modalities available on the robot: electrode
values in the BioTac sensors, joint position of the fingers,
strain gages that are mounted in the fingers, the orientation
of the hand, wrist-mounted force-torque sensor values and
the finger forces computed from the BioTac electrodes data
using the algorithm presented in [8].

Table I shows the average classification accuracy values
for different sensory modalities trained on 500 grasps. ST-
HMP features extracted from the raw electrode values of
the BioTac sensors gives a better performance than any
other modality alone. Combining different modalities leads
to only a slight accuracy increase, from 90.73% to 91.09%,
which indicates that most of the grasp outcome information
is already contained in the electrode values. Interestingly, the
performance of using the forces estimated from the BioTacs
is comparable to using the raw BioTac electrode values
(88.55% and 90.73%, respectively). This indicates that finger

'http://bigs.robotics.usc.edu/
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Fig. 4: Reinforcement learning curve for regrasping using
REPS. Policy updates are performed after each 100 regrasps.
The average reward increases after each policy update. The
policy converges after 8 updates.

contact forces already contain a large amount of information
about the grasp success and HMP with dictionary learning
is able to implicitly extract this information. However, the
better performance of the grasp stability prediction using the
raw BioTac electrode values indicates that there are more
clues about the grasp success that can be extracted from the
electrode values than contained in the estimated force values.

In order to boost the performance of the grasp stability
predictor we additionally increased the training dataset from
500 to 1000 grasps. This further improves the accuracy of
the method that fuses all the modalities from from 91.09% to
93.00%. This indicates that with larger amounts of data, the
learning method used in this work is able to better generalize
to the problem of grasp stability prediction.

B. Evaluation of the regrasping behavior

1) Experimental Setup: After learning the grasp stability
predictor, we evaluate the regrasping algorithm, which uses
the feedback provided by the stability prediction. The ex-
perimental setup is similar to the one for the grasp stability
predictor. Since the robot can self-supervise by using the
stability prediction, we are able to let the robot run for more
than 30 hours to autonomously learn the regrasping behavior.

The dimensionality of ST-HMP features becomes large
with the growing number of spatio-temporal cells. As men-
tioned earlier, the dimensionality of our feature descriptor is
86800. As described in Sec. IV-A, we apply PCA and extract
5 principal components from the grasp stability training
data collected over 1000 grasps. Our policy contains 30
parameters (5 for each of the 6 grasp adjustment dimensions).

To evaluate the policy search, we collect 9 sets of 100 re-
grasping samples using the currently learned policy, resulting
in a total of 900 policy samples. The policy is updated after
each set. The regrasping procedure is as follows: first, we
perform a random grasp in the same way as during grasp
stability data collection. If it is unsuccessful, the algorithm
samples the current policy and the robot performs up to
3 regrasps. If one of the regrasps is successful, the robot
stops regrasping and performs the next random grasp. The
following rewards are saved for all policy samples:

Regrasping Performance [%)]
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Fig. 5: Results for the regrasping experiment using the
learned policy. Evaluated over 100 random grasps on the
original object used for training the policy (blue) and a novel
object (orange). There is a significant increase of the grasp
success rate with additional regrasps.

0.0 - The grasp is predicted unsuccessful by the stability
predictor. We do not perform any additional actions.

0.5 - The grasp is predicted successful by the stability
predictor, which, due to its high accuracy, corresponds to
a stable grasp at the beginning. However, the object falls out
of the hand after additional extensive shaking motions.

1.0 - The grasp is predicted successful and the object is still
in the hand after additional shaking motions.

2) Results: Fig. 4 shows the average reward values af-
ter each policy update. The robot is able to improve its
regrasping behavior significantly. The policy starts at the
average reward of 0.24 and converges to 0.63 after 8 policy
updates. This means that the average regrasp achieved with
the learned policy was almost always stable when picking
up the object and very often it was stable enough to stay
in hand during the extensive shaking motions. During the
experiments, we were able to see many intuitive corrections
made by the robot by using the tactile feedback. The robot
was able to identify if one of the fingers was only barely
touching the object’s surface, causing the object to rotate in
hand. In this case, the generated regrasp resulted in either
rotating or translating the gripper such that all of its fingers
were firmly touching the object. Another noticeable trend
learned through reinforcement learning was that the robot
would regrasp the central part of the object which was
closer to the center of mass, hence more stable for grasping.
Moreover, the texture of the lid of the object used in the
experiments was very smooth which often resulted in the
object sliding down. However, the surface below the lid was
rougher, which leads to a better grasp, and the robot was
able to find this subtlety by using the tactile feedback.

In order to evaluate the final policy learned by our ap-
proach, we perform additional 100 random grasps of the
object that we used for learning the policy and another 100
random grasps of a novel object (Fig. 3 right). The new
object is both smaller and lighter. However, it still has a
similar cylindrical shape. The robot has 3 attempts to regrasp
each of the objects using the learned policy. Fig. 5 shows
the percentage of successful grasps using the initial random



grasp and allowing the robot to perform 1, 2 or 3 regrasps.
In this case, the grasp is classified as successful if the object
is still in hand after the shaking motions. Already after 1
regrasp, the robot is able to correct the majority of the failed
grasps. The success rate achieved with the original object on
which the policy was learned increases from 41.8% to 83.5%.
Moreover, allowing additional regrasps increases this value
to 90.3% for 2 and 97.1% for 3 regrasps.

This shows that sampling the policy several times in-
creases the probability of a successful regrasp. A likely
explanation for this is that the policy variance stays high
due to existence of high-reward samples that lie far from
each other. To exactly represent such a distribution, a more
complex policy is needed, which is the area of future work.

The regrasping success rate on the novel object is slightly
lower than on the original one. Since the novel object is
smaller, the policy tends to overshoot the pose correction,
which was learned for the larger object. However, we are still
able to achieve a significant improvement of the grasping
performance, resulting in an improvement from 40.2% to
75.2% success rate after 1 regrasp, 82.5% and 92.1% after
2 and 3 regrasps respectively. These results indicate that the
robot is able to learn a regrasping strategy that generalizes
to a novel object using a policy learned on another object of
a similar shape but different size and physical properties.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a framework for learning
regrasping behaviors based on tactile data. We trained a grasp
stability predictor that uses spatio-temporal tactile features
collected from the early-object-lifting phase to predict the
grasp outcome with high accuracy. The trained predictor was
used to supervise and provide feedback to a reinforcement
learning algorithm that also uses spatio-temporal features
extracted from a biomimetic tactile sensor to estimate the
required grasp adjustments. In order to test our approach, we
collected over 50 hours of evaluation data on a real robot.
We were able to achieve a 93% grasp prediction accuracy
and improve grasp success rate of a single object from 41.8%
to 97.1% (and on a novel object from 40.2% to 92.1%) by
allowing up to 3 regrasps of the object.

In the future work, we plan to use a more complex policy
class to better cover the distribution of the correct grasp
adjustments and reduce the variance of the policy samples.
Additionally, we plan to evaluate our approach on a larger
amount of objects and learn regrasping behaviors that work
across a wide range of different objects and scenarios.
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