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I. INTRODUCTION

Robust and stable grasping is one of the key requirements
for successful robotic manipulation. Although, there has been
a lot of progress in the area of grasping [1], the state-of-the-
art approaches may still result in failures. Ideally, the robot
would detect failures quickly enough to be able to correct
them. In addition, the robot should be able to learn from its
mistakes to avoid the failures in the future. To address these
challenges, we propose using early grasp stability prediction
during the initial phases of the grasp. We also present a
regrasping behavior that corrects failed grasps based on this
prediction and improves over time.

In our previous work [2], we presented a first step towards
an autonomous regrasping behavior using spatio-temporal
tactile features and reinforcement learning. We were able to
show that simple regrasping strategies can be learned using
linear policies if enough data is provided. However, these
strategies do not generalize well to other classes of objects
than those they were trained on. The main reason for this
shortcoming is that the policies are not representative enough
to capture the richness of different shapes and physical
properties of the objects. A potential solution to learn a more
complex and generalizable regrasping strategy is to employ
a more complex policy class and gather a lot of real-robot
data with a variety of objects to learn the policy parameters.
The main weakness of such a solution is that, in addition
to requiring large amounts of data, these complex policies
often result in the learner becoming stuck in poor local
optima [3]. In this paper, we propose learning a complex
high-dimensional regrasping policy in a supervised fashion.
Our method uses simple linear policies to guide the general
policy to avoid poor local minima and to learn the general
policy from smaller amounts of data.

The idea of using supervised learning in policy search
has been used in [4], where the authors use trajectory
optimization to direct the policy learning process and apply
the learned policies to various manipulation tasks. A similar
approach was proposed in [5], where the authors use deep
spatial autoencoders to learn the state representation and
unify a set of linear Gaussian controllers to generalize for the
unseen situations. In our work, we use the idea of unifying
simple strategies to generate a complex generic policy. Here,
however, we use simple linear policies learned through
reinforcement learning rather than optimized trajectories as
the examples that the general policy can learn from.

II. TECHNICAL APPROACH

To describe a time series of tactile data, we employ spatio-
temporal feature descriptors extracted using Spatio-Temporal
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Fig. 1: Objects and experimental setup used for learning the
grasp stability predictor and the regrasping behavior. Top-
left: the cylinder. Top-right: the box. Bottom-left: the ball.
Bottom-right: the novel object.

Hierarchical Matching Pursuit (ST-HMP) that have been
shown to have high performance in temporal tactile data clas-
sification tasks [6]. When combined with learning regrasping
behaviors for multiple objects, the ST-HMP approach leads
to a large number of parameters to learn for the regrasping
mapping function, which is usually a hard task for policy
search algorithms [3]. Thus, in this work, we add several
modifications to make this process feasible. In particular,
we divide the learning process into two stages: i) learning
linear policies for individual objects and ii) learning a high-
dimensional policy to generalize between objects.

Once a grasp is predicted to fail by the grasp stability
predictor, the robot has to place the object down and regrasp
it using the information acquired during the initial grasp. In
order to achieve this goal, we learn a mapping from the tactile
features of the initial grasp to the grasp adjustment, i.e. the
change in position and orientation between the initial grasp
and the regrasp. The parameters of this mapping function for
individual objects are learned using reinforcement learning.
We define the policy π(θ) as a Gaussian distribution over
mapping parameters θ with a mean µ and a covariance
matrix Σ. To reduce the dimensionality of the input features,
we perform a principal component analysis (PCA) [7] on
the ST-HMP descriptors and use only the largest principal
components. The mapping function is a linear combination
of these PCA features: (x, y, z, α, β, γ) = Wφ with W ∈
R6×n and φ ∈ Rn, where W contains the learned weights
θ = (wx,1, . . . , wx,n, . . . , wγ,n) of the features φ, and n is
the number of principal components. The reward R(θ) is
computed by estimating the success of the adjusted grasp
using the grasp stability predictor. For optimizing the linear
policy for individual objects we use the relative entropy
policy search (REPS) algorithm [8].

After the individual linear policies have been learned, we
train a larger high-dimensional policy in a supervised manner
using the outputs of the individual policies. This is similar
to the guided policy search approach proposed in [9]. In



Object Individual policies (# regrasps) Combined policy
0 1 2 3

Cylinder 41.8 83.5 90.3 97.1 92.3
Box 40.7 85.4 93.7 96.8 87.6
Ball 52.9 84.8 91.2 95.1 91.4
New object 40.1 - - - 80.7

TABLE I: Performance of the individual and combined
regrasping policies.

our case, the guidance of the general policy comes from the
individual policies that can be efficiently learned for separate
objects. As the general policy class we choose a neural
network with a large number of parameters. Such a policy has
enough representational richness to incorporate regrasping
behavior for many different objects. However, learning its
parameters directly requires a very large number of exper-
iments, whereas supervised learning with already learned
individual policies speeds up the process significantly.

To generate training data for learning the general pol-
icy, we sample grasp corrections from the already learned
individual policies using previously collected data. Input
features and resulting grasp corrections are combined in a
“transfer” dataset, which is used to transfer the behaviors
to the general policy. In order to increase the amount of
information provided to the general policy, we increase the
number of its input features by extracting a larger number of
PCA components from the ST-HMP features. Using different
features in the general policy than in the original individual
policies is one of the advantages of our setting. The individ-
ual policies provide outputs of the desired behavior, while
the general policy can have a different set of input features.

III. EXPERIMENTAL RESULTS

In our experiments, we use a Barrett arm and hand
that is equipped with three biomimetic tactile sensors (Bio-
Tacs) [10]. For extracting ST-HMP features, the BioTac
electrode values are laid out in a 2D tactile image according
to their spatial arrangement on the sensor.

First, we evaluate individual regrasping policies. The robot
performs a randomly generated top grasp using the force grip
controller [11], and lifts the object. At the final stage of the
experiment, the robot performs extensive shaking motions in
all directions to ensure that the grasp is stable. The robot uses
the stability prediction to self-supervise the learning process.

To evaluate the results of the policy search, we perform
100 random grasps using the final policies on each of the
objects that they were learned on. The robot has three
attempts to regrasp each object using the learned policy.
Table I shows the percentage of successful grasps on each
object after each regrasp. Already after one regrasp, the
robot is able to correct the majority of the failed grasps
by increasing the success rate of the grasps from 41.8% to
83.5% on the cylinder, from 40.7% to 85.4% on the box
and from 52.9% to 84.8% on the ball. Moreover, allowing
additional regrasps increases this value to 90.3% for two and
97.1% for three regrasps on the cylinder, 93.7% and 96.8%
on the box, and to 91.2% and 95.1% on the ball. These
results indicate that the robot is able to learn a tactile-based
regrasping strategy for individual objects.

After training individual policies we create a “transfer”
dataset with grasp corrections obtained from the individual
linear regrasping policies for all objects. For each set of
tactile features, we query the respective previously-learned
linear policy for the corresponding grasp correction. We take
the input features for the individual policies from the unsuc-
cessful grasps in the open-source BiGS dataset [12]. The
grasps in BiGS were collected in an analogous experimental
setup and can directly be used for creating the “transfer”
dataset. Here, we employ a neural network to mimic the
behavior of the individual policies.

Table I shows performance of the generalized policy on the
single objects. Interestingly, the combined policy achieves
better performance on each of the single objects than the
respective linear policies learned specifically for these object
after one regrasp. Furthermore, in cases of the cylinder and
the ball, the performance of the generalized policy is better
than the linear policies evaluated after two regrasps. This
shows that the general policy generalizes well between the
single policies. In addition, by utilizing the knowledge ob-
tained from single policies, the generalized policy performs
better on the objects that the single policies were trained on.

We test performance of the generalized policy on a novel,
more complex object (see the bottom-right corner in Fig. 1),
which was not present during learning. The generalized pol-
icy improves the grasping performance significantly, which
shows its ability to generalize to more complex objects.
Nevertheless, there are some difficulties when the robot
performs regrasp on a part of the object that is different
from the initial grasp. In this case, the regrasp is incorrect
for the new part of the object, i.e. the yaw adjustment is
suboptimal for the box part of the object due to the round
grasping surface (the lid) in the initial grasp.

During the experiments, we were able to observe many
intuitive corrections made by the robot using the learned
regrasping policy. The robot was able to identify if one of the
fingers was only barely touching the object’s surface, causing
the object to rotate in the hand. In this case, the regrasp
resulted in either rotating or translating the gripper such that
all of its fingers were firmly touching the object. Another
noticeable trend learned through reinforcement learning was
that the robot would regrasp the middle part of the object
which was closer to the center of mass, hence, more stable for
grasping. On the box object, the robot learned to change its
grasp such that its fingers were aligned with the box’s sides.
These results indicate that not only can the robot learn a set
of linear regrasping policies for individual objects, but also
that it can use them as the basis for guiding the generalized
regrasping behavior.

IV. CONCLUSIONS

Our experiments indicate that the combined policy learned
using our method is able to achieve better performance
on each of the single objects than the respective linear
policies learned using reinforcement learning specifically for
these objects after one regrasp. Moreover, the general policy
achieves approximately 80% success rate after one regrasp
on a novel object that was not present during training. These
results show that our supervised policy learning method ap-
plied to regrasping can generalize to more complex objects.
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