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Abstract. We present a method for learning a general regrasping behavior by us-
ing supervised policy learning. First, we use reinforcement learning to learn linear
regrasping policies, with a small number of parameters, for single objects. Next,
a general high-dimensional regrasping policy is learned in a supervised manner
by using the outputs of the individual policies. In our experiments with multiple
objects, we show that learning low-dimensional policies makes the reinforcement
learning feasible with a small amount of data. Our experiments indicate that the
general high-dimensional policy learned using our method is able to outperform
the respective linear policies on each of the single objects that they were trained
on. Moreover, the general policy is able to generalize to a novel object that was
not present during training.
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1 Introduction

Robust and stable grasping is one of the key requirements for successful robotic ma-
nipulation. Although, there has been a lot of progress in the area of grasping [1], the
state-of-the-art approaches may still result in failures. Ideally, the robot would detect
failures quickly enough to be able to correct them. In addition, the robot should be
able to learn from its mistakes to avoid the failures in the future. To address these chal-
lenges, we propose using early grasp stability prediction during the initial phases of the
grasp. We also present a regrasping behavior that corrects failed grasps based on this
prediction and improves over time.

In our previous work [2], we presented a first step towards an autonomous re-
grasping behavior using spatio-temporal tactile features and reinforcement learning. We
were able to show that simple regrasping strategies can be learned using linear policies
if enough data is provided. However, these strategies do not generalize well to other
classes of objects than those they were trained on. The main reason for this shortcom-
ing is that the policies are not representative enough to capture the richness of different
shapes and physical properties of the objects. A potential solution to learn a more com-
plex and generalizable regrasping strategy is to employ a more complex policy class and
gather a lot of real-robot data with a variety of objects to learn the policy parameters.
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The main weakness of such a solution is that, in addition to requiring large amounts
of data, these complex policies often result in the learner becoming stuck in poor local
optima [3, 4]. In this paper, we propose learning a complex high-dimensional regrasp-
ing policy in a supervised fashion. Our method uses simple linear policies to guide the
general policy to avoid poor local minima and to learn the general policy from smaller
amounts of data.

In related work [5], the authors tackle the regrasping problem by searching for the
closest stable grasp in the database of all the previous grasps performed by the robot. A
similar approach is presented by [6], where the authors propose an impedance-control-
based grasp adaptation strategy that searches a database for a similar tactile experience
in order to correct the grasp. In that case, the grasp adaptation is focused on in-hand
adjustments rather than placing the object down and regrasping it.

The idea of using supervised learning in policy search has been used in [7], where
the authors use trajectory optimization to direct the policy learning process and apply
the learned policies to various manipulation tasks. A similar approach was proposed
in [8], where the authors use deep spatial autoencoders to learn the state representa-
tion and unify a set of linear Gaussian controllers to generalize for the unseen situa-
tions. In our work, we use the idea of unifying simple strategies to generate a complex
generic policy. Here, however, we use simple linear policies learned through reinforce-
ment learning rather than optimized trajectories as the examples that the general policy
can learn from.

2 Technical Approach

In this section, we describe all the steps of the hereby presented pipeline. First, we learn
a grasp stability predictor for early detection of grasp failures based on spatio-temporal
tactile features. In the second step, the grasp prediction is used to provide feedback for
reinforcement learning of low-dimensional linear regrasping policies for single objects.
Finally, in the last step, the individual policies are combined in a high-dimensional
general policy through supervised learning.

2.1 Grasp stability prediction with spatio-temporal tactile features

To describe a time series of tactile data, we employ spatio-temporal feature descriptors
extracted using Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) that have
been shown to have high performance in temporal tactile data classification tasks [9].
ST-HMP is based on Hierarchical Matching Pursuit (HMP), which is an unsupervised
feature-extraction method used for images [10]. In ST-HMP, the tactile information is
aggregated both in the spatial and the temporal domains. This is achieved by construct-
ing a pyramid of spatio-temporal features at different coarseness levels, which provides
invariance to spatial and temporal deviations of the tactile signal.

In the spatial domain, the dictionary is learned and the sparse codes are extracted
from small tactile image patches. To encode data as sparse codes, HMP learns a dictio-
nary of codewords using the common codebook-learning method K-SVD [11]. Given a
set ofN H-dimensional observations (e.g. image patches) Y = [y1, . . . , yN ] ∈ RH×N ,
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HMP learns a M -word dictionary D = [d1, . . . , dM ] ∈ RH×M and the corresponding
sparse codes X = [x1, . . . , xN ] ∈ RM×N that minimize the reconstruction error be-
tween the original and the encoded data:

min
D,X
‖Y −DX‖2F s. t. ∀m ‖dm‖2 = 1 and ∀i ‖xi‖0 ≤ K,

where ‖ · ‖F is a Frobenius norm, xi are the sparse vectors, ‖ · ‖0 is a zero-norm that
counts number of non-zero elements in a vector, and K is the sparsity level that limits
the number of non-zero elements in the sparse codes. The resulting sparse codes are
aggregated using spatial max-pooling.

After computing the HMP features for all tactile images in the time series, pool-
ing is performed on the temporal level by constructing a temporal pyramid. The tactile
sequence is divided into sub-sequences of different lengths. For all sub-sequences, the
algorithm performs max-pooling of the HMP features resulting in a single feature de-
scriptor for each sub-sequence. Combined with spatial pooling, this results in a spatio-
temporal pooling of the sparse codes.

Finally, the features of all the spatio-temporal cells are concatenated to create a sin-
gle feature vector FP for the complete tactile sequence: FP = [C11, . . . , CST ], where
S is the number of spatial cells and T is the number of temporal cells. After extract-
ing the ST-HMP feature descriptor from the tactile sequence, we use a linear Support
Vector Machine (SVM) to learn a classifier for the grasp stability prediction [9].

Using multiple levels in the spatial and temporal pyramids of ST-HMP increases the
dimensionality of tactile features substantially. When combined with learning regrasp-
ing behaviors for multiple objects, this approach leads to a large number of parameters
to learn for the regrasping mapping function, which is usually a hard task for policy
search algorithms [4]. Thus, in this work, we add several modifications to make this
process feasible. In particular, we divide the learning process into two stages: i) learn-
ing linear policies for individual objects and ii) learning a high-dimensional policy to
generalize between objects.

2.2 Learning linear regrasping policies for individual objects

Once a grasp is predicted to fail by the grasp stability predictor, the robot has to place
the object down and regrasp it using the information acquired during the initial grasp.
In order to achieve this goal, we learn a mapping from the tactile features of the initial
grasp to the grasp adjustment, i.e. the change in position and orientation between the
initial grasp and the regrasp. The parameters of this mapping function for individual
objects are learned using reinforcement learning. We define the policy π(θ) as a Gaus-
sian distribution over mapping parameters θ with a mean µ and a covariance matrix
Σ. To reduce the dimensionality of the input features, we perform principal compo-
nent analysis (PCA) [12] on the ST-HMP descriptors and use only the largest principal
components. The mapping function is a linear combination of these PCA features:

(x, y, z, α, β, γ) = Wφ with W ∈ R6×n and φ ∈ Rn,

where W contains the learned weights θ = (wx,1, . . . , wx,n, . . . , wγ,n) of the features
φ, and n is the number of principal components. The reward R(θ) is computed by
estimating the success of the adjusted grasp using the grasp stability predictor.
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For optimizing the linear policy for individual objects we use the relative entropy
policy search (REPS) algorithm [13]. The main advantage of this method is that, in
the process of reward maximization, the loss of information during a policy update is
bounded, which leads to a better convergence behavior.

The goal of REPS is to maximize the expected reward J(π) of the policy π subject
to bounded information loss between the previous and updated policy. Information loss
is defined as the Kullback-Leibler (KL) divergence between the two policies. Bounding
the information loss limits the change of the policy and hence, avoids sampling too far
from unexplored policy regions. Let q(θ) be the old policy and π(θ) be the new policy
after the policy update. We formulate a constrained optimization problem:

max
π

J(π) =

∫
π(θ)R(θ) dθ s. t.

∫
π(θ) log

π(θ)

q(θ)
dθ ≤ ε,

where, as mentioned before, J(π) is the total expected reward of using the policy π(θ).
The additional constraint bounds the KL-divergence between the policies with the max-
imum information lost set to ε. The updated policy is proportional to the old policy:

π(θ) ∝ q(θ) exp
(
R(θ)

η

)
.

Therefore, we are able to compute the new policy parameters with a weighted maximum-
likelihood solution. The weights are equal to exp (R(θ)/η), where the rewards are
scaled by the parameter η. By decreasing η one gives larger weights to the high-reward
samples. An increase of η results in more uniform weights. The parameter η is com-
puted according to the optimization constraints by solving the dual problem.

Given a set of policy parameters {θ1, . . . ,θN} and corresponding episode rewards,
the policy update rules for µ and Σ can be formulated as follows [4]:

µ =

∑N
i=1 diθi∑N
i=1 di

, Σ =

∑N
i=1 di (θi − µ) (θi − µ)

>∑N
i=1 di

with di = exp (R(θ)/η) .

2.3 Learning a general regrasping policy

After the individual linear policies have been learned, we train a larger high-dimensional
policy in a supervised manner using the outputs of the individual policies. This is sim-
ilar to the guided policy search approach proposed in [3]. In our case, the guidance of
the general policy comes from the individual policies that can be efficiently learned for
separate objects. As the general policy class we choose a neural network with a large
number of parameters. Such a policy has enough representational richness to incorpo-
rate regrasping behavior for many different objects. However, learning its parameters
directly requires a very large number of experiments, whereas supervised learning with
already learned individual policies speeds up the process significantly.

To generate training data for learning the general policy, we sample grasp correc-
tions from the already learned individual policies using previously collected data. Input
features and resulting grasp corrections are combined in a “transfer” dataset, which is
used to transfer the behaviors to the general policy. In order to increase the amount of
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Fig. 1: Objects and experimental setup used for learning the grasp stability predictor and
the regrasping behavior. If an object falls out of the hand it returns to its initial position
due to the shape of the bowl. Top-left: the cylinder. Top-right: the box. Bottom-left: the
ball. Bottom-right: the novel object.

information provided to the general policy, we increase the number of its input features
by extracting a larger number of PCA components from the ST-HMP features. Using
different features in the general policy than in the original individual policies is one
of the advantages of our setting. The individual policies provide outputs of the desired
behavior, while the general policy can have a different set of input features.

To train the neural network, we employ the mean-squared error loss function and the
Levenberg-Marquardt optimization algorithm [14]. In the hidden layers, we use neurons
with the hyperbolic tangent sigmoid transfer function:

a(x) =
2

1 + exp(−2x)
− 1.

For the activation of the output layer we use a linear transfer function, i.e. the output
is a linear combination of the inputs from the previous layer. In order to avoid overfit-
ting of the training data we employ the early stopping technique during training [15].
The data set is divided into mutually exclusive training, validation and test sets. While
the network parameters are optimized on the training set, the training stops once the
performance on the validation set starts decreasing.

3 Experimental Results

3.1 Evaluation of grasp stability prediction

In our experiments, we use a Barrett arm and hand that is equipped with three biomimetic
tactile sensors (BioTacs) [16]. Each BioTac includes an array of 19 electrodes, whose
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impedances change depending on the local deformation of the robot’s flexible skin. For
extracting ST-HMP features, the BioTac electrode values are laid out in a 2D tactile
image according to their spatial arrangement on the sensor as depicted in Fig. 2 (top
left). We use bowls (see Fig. 1) to bring the objects up right if they fall out of the gripper
during the extensive shaking motions that are performed later in the experiment. This
experimental setup enables us to fully automate the learning process and let the robot
run for many hours to autonomously learn the grasp stability predictor.

The experiment proceeds as follows. The robot reaches for the object to perform a
randomly generated top grasp. The randomness stems from white noise added to the
top grasp. Standard deviation of the noise is ±10deg in roll and pitch of the gripper,
±60deg in yaw, and ±1cm in all translational directions. These parameters are tuned
such that there is always at least one finger touching the object. After approaching and
grasping the object using the force grip controller [17], the robot lifts the object and
performs extensive shaking motions in all directions to ensure that the grasp is stable.
The shaking motions are performed by rapidly changing the end-effector’s orientation
by±15deg and position by ±3cm in all directions multiple times. If the object is still in
the hand after the shaking motions, we consider it to be a successful grasp. The wrist-
mounted force-torque sensor is used to determine if the object is still in the hand at the
end of the experiment.

The ST-HTMP features use a temporal window of 650ms before and 650ms after
starting picking up the object. Our goal is to determine early in the lifting phase if the
grasp is going to fail. In this manner, the robot can stop the motion early enough to avoid
displacing the object, and hence, it can regrasp it later. We evaluate our approach on
three objects: a cylindrical object, a box and a ball. We perform a 5-fold cross-validation
on 500 grasp samples for each object. The robot achieves a grasp classification accuracy
of 90.7% on the cylinder, 82.4% on the box and 86.4% on the ball.

3.2 Learning individual linear regrasping policies

After learning the grasp stability predictor, we evaluate the regrasping algorithm for
individual policies. The experimental setup for this scenario is similar to the one for
the grasp stability predictor. The robot uses the stability prediction to self-supervise the
learning process. In this manner, we are able to let the robot run for many hours for
each object to autonomously learn the regrasping behavior.

As described in Sec. 2.2, we apply PCA and extract five principal components from
the ST-HMP features for learning individual policies. As a result, linear policies contain
only 30 parameters (5 for each of the 6 grasp adjustment dimensions). This makes the
policy search feasible using relatively small amounts of data.

We evaluate the individual policies learned for the cylinder, box and ball objects.
We perform multiple policy updates for each object until the policy converges. For each
update, we collect 100 regrasping samples. First, we perform a randomly generated
top grasp. If the grasp is predicted to fail, the algorithm samples the current regrasping
policy and the robot performs up to three regrasps. If one of the regrasps is successful,
the robot stops regrasping and performs the next random grasp. The rewards for the
reinforcement learning are specified as follows. 0.0: The grasp is predicted unsuccessful
by the grasp stability predictor. We do not perform any additional actions. 0.5: The grasp
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Fig. 2: Top left: schematic of the electrode arrangements on the BioTac sensor and the
corresponding tactile image used for the ST-HMP features. V1, V2 and V3 are com-
puted by averaging the neighboring electrode values. Top right, bottom left, bottom
right: reinforcement learning curves for regrasping individual objects using REPS. Pol-
icy updates are performed every 100 regrasps.

is predicted successful by the stability predictor. However, the object falls out of the
hand after additional extensive shaking motions. 1.0: The grasp is predicted successful
and the object is still in the hand after the shaking motions.

Fig. 2 shows the average reward values after each policy update for all the objects.
The robot is able to improve its regrasping behavior significantly. To evaluate the results
of the policy search, we perform 100 random grasps using the final policies on each of
the objects that they were learned on. The robot has three attempts to regrasp each
object using the learned policy. Table 1 shows the percentage of successful grasps on
each object after each regrasp. Already after one regrasp, the robot is able to correct the
majority of the failed grasps by increasing the success rate of the grasps from 41.8%
to 83.5% on the cylinder, from 40.7% to 85.4% on the box and from 52.9% to 84.8%
on the ball. Moreover, allowing additional regrasps increases this value to 90.3% for
two and 97.1% for three regrasps on the cylinder, 93.7% and 96.8% on the box, and
to 91.2% and 95.1% on the ball. These results indicate that the robot is able to learn a
tactile-based regrasping strategy for individual objects.

3.3 Evaluation of general regrasping policy

After training individual policies we create a “transfer” dataset with grasp corrections
obtained from the individual linear regrasping policies for all objects. For each set of
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Object Individual policies Combined policy
No regrasps 1 regrasp 2 regrasps 3 regrasps

Cylinder 41.8 83.5 90.3 97.1 92.3
Box 40.7 85.4 93.7 96.8 87.6
Ball 52.9 84.8 91.2 95.1 91.4
New object 40.1 - - - 80.7

Table 1: Performance of the individual and combined regrasping policies.

tactile features, we query the respective previously-learned linear policy for the corre-
sponding grasp correction. We take the input features for the individual policies from
the failed grasps in the open-source1 BiGS dataset [18]. The grasps in BiGS were col-
lected in an analogous experimental setup and can directly be used for creating the
“transfer” dataset . In total, the training set contains 3351 examples: 1380 for the cylin-
der, 1035 for the box and 936 for the ball. We use supervised learning with the obtained
dataset to learn a combined policy that mimics the behavior of the individual policies.
In this work, we employ a neural network to achieve this task.

To find the optimal architecture of the neural network, we evaluated different net-
works with various depths and numbers of neurons to learn the nonlinear policy. The
best performance is achieved by using 20 ST-HMP PCA features as inputs. We have
not observed any improvement of the approximation accuracy when using more than
one hidden layer. This indicates that the ST-HMP algorithm already extracts most dis-
tinctive features from the tactile data and we do not require additional deep network
architecture for our task. The final neural network consists of one hidden layer of 20
hidden units with tangent sigmoid activation functions, 20 input features and 6 outputs
for grasp position and orientation adjustments. The resulting number of parameters in
the generalized policy is 546. Such a high-dimensional policy would be hard to learn
by directly employing reinforcement learning. Our formulation as supervised learning,
however, simplifies this problem and makes the learning process with relatively small
amounts of data more feasible.

Table 1 shows performance of the generalized policy on the single objects. Since the
combined policy is deterministic, we only evaluate a single regrasp for each failed grasp.
Interestingly, the combined policy is able to achieve better performance on each of the
single objects than the respective linear policies learned specifically for these object
after one regrasp. Furthermore, in cases of the cylinder and the ball, the performance of
the generalized policy is better than the linear policies evaluated after two regrasps. This
shows that the general policy generalizes well between the single policies. In addition,
by utilizing the knowledge obtained from single policies, the generalized policy is able
to perform better on the objects that the single policies were trained on.

The performance of the generalized policy on the box object is slightly worse than
on the two other objects. A notable difference in this case is the increased importance
of the gripper yaw angle with respect to the grasp performance. The individual policy
learned on the box learns to correct the grasp such that the robot aligns its fingers with
the box sides while regrasping. However, this is not important for the cylinder and the

1 http://bigs.robotics.usc.edu/
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ball objects due to their symmetric shapes. Therefore, the regrasping policy for the box
could not benefit from the two other policies when adjusting grasp in the yaw direction.

We test performance of the generalized policy on a novel, more complex object (see
the bottom-right corner in Fig. 1), which was not present during learning. It is worth
noting that the novel object combines features of the three objects that the policies were
trained on. The generalized policy is able to improve the grasping performance signif-
icantly, which shows its ability to generalize to more complex objects. Nevertheless,
there are some difficulties when the robot performs regrasp on a part of the object that
is different from the initial grasp, such as switching from the round lid to the bottom
part of the object, which is of a box form. In this case, the regrasp is incorrect for the
new part of the object, i.e. the yaw adjustment is suboptimal for the box part of the
object due to the round grasping surface (the lid) in the initial grasp. The reason is the
lack of this data point in the previously encountered situations in the training dataset.

During the experiments, we were able to observe many intuitive corrections made
by the robot using the learned regrasping policy. The robot was able to identify if one
of the fingers was only barely touching the object’s surface, causing the object to rotate
in the hand. In this case, the regrasp resulted in either rotating or translating the gripper
such that all of its fingers were firmly touching the object. Another noticeable trend
learned through reinforcement learning was that the robot would regrasp the middle part
of the object which was closer to the center of mass, hence, more stable for grasping. On
the box object, the robot learned to change its grasp such that its fingers were aligned
with the box’s sides. These results indicate that not only can the robot learn a set of
linear regrasping policies for individual objects, but also that it can use them as the
basis for guiding the generalized regrasping behavior.

4 Conclusions and Future Work

In this work, we proposed a method that is able to learn complex high-dimensional poli-
cies by using examples from simple policies learned through reinforcement learning. In
this manner, we were able to avoid requiring large amounts of data to learn complex
policies. Instead, we employed supervised learning techniques to mimic various behav-
iors of simple policies.

To show the effectiveness of our method, we applied it to the problem of regrasping
using tactile features. In particular, we used early grasp stability prediction during the
initial phases of the grasp and a regrasping behavior that corrects failed grasps based on
this prediction and improves over time.

Our experiments indicate that the combined policy learned using our method is able
to achieve better performance on each of the single objects than the respective linear
policies learned using reinforcement learning specifically for these objects after one
regrasp. Moreover, the general policy achieves approximately 80% success rate after
one regrasp on a novel object that was not present during training. These results show
that our supervised policy learning method applied to regrasping can generalize to more
complex objects.
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As a next step, we plan to use the supervised policy learning method to learn other,
more complex manipulation tasks. We also hope to be able to extend the presented
method with other sensor modalities such as vision.
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