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Introduction
Robust and stable grasping is one of the key requirements for
successful robotic manipulation. Although, there has been a
lot of progress in the area of grasping [1], the state-of-the-
art approaches may still result in failures. Ideally, the robot
would detect failures quickly enough to be able to correct
them. In addition, the robot should be able to learn from its
mistakes to avoid similar failures in the future. To address
these challenges, we propose using early grasp stability pre-
diction during the initial phases of the grasp. We also present
a machine learning method that is able to learn a regrasping
behavior that corrects failed grasps based on tactile percep-
tion and improves over time.

In our previous work [2], we presented a first step towards
an autonomous regrasping behavior using spatio-temporal
tactile features and reinforcement learning. We were able to
show that simple regrasping strategies can be learned using
linear policies if enough data is provided. However, these
strategies do not generalize well to other classes of objects
than those they were trained on. The main reason for this
shortcoming is that the policies are not descriptive enough to
capture the richness of different shapes and physical prop-
erties of the objects. A potential solution to learn a more
complex and generalizable regrasping strategy is to employ
a more complex policy class and gather a lot of real-robot
data with a variety of objects to learn the policy parameters.
The main weakness of such a solution is that, in addition
to requiring large amounts of data, these complex policies
often result in the learner becoming stuck in poor local op-
tima [3]. In this paper, we propose learning a complex high-
dimensional regrasping policy in a supervised fashion. Our
method uses simple linear policies to guide the general pol-
icy to avoid poor local minima and to learn the general pol-
icy from smaller amounts of data.

The idea of using supervised learning in policy search
has been used in [4], where the authors use trajectory op-
timization to direct the policy learning process and apply
the learned policies to various manipulation tasks. A sim-
ilar approach was proposed in [5], where the authors use
deep spatial autoencoders to learn the state representation
and unify a set of linear Gaussian controllers to generalize
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Figure 1: Objects and experimental setup used for learn-
ing the grasp stability predictor and the regrasping behavior.
Top-left: the cylinder. Top-right: the box. Bottom-left: the
ball. Bottom-right: the novel object.

for the unseen situations. In our work, we use the idea of uni-
fying simple strategies to generate a complex generic policy.
Here, however, we use simple linear policies learned through
reinforcement learning rather than optimized trajectories as
the examples that the general policy can learn from.

Technical Approach
Grasp Stability Prediction with Spatio-Temporal Tac-
tile Features To describe a time series of tactile data, we
employ spatio-temporal feature descriptors extracted using
Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP)
that have been shown to have high performance in tempo-
ral tactile data classification tasks [6]. ST-HMP is based on
Hierarchical Matching Pursuit (HMP), which is an unsuper-
vised feature-extraction method used for images [7]. In ST-
HMP, the tactile information is aggregated both in the spatial
and the temporal domains. This is achieved by constructing
a pyramid of spatio-temporal features at different coarseness
levels, which provides invariance to spatial and temporal de-
viations of the tactile signal.

In the spatial domain, the dictionary is learned and the
sparse codes are extracted from small tactile image patches.
To encode data as sparse codes, HMP learns a dictionary of
codewords using the common codebook-learning method K-
SVD [8]. Given a set ofN H-dimensional observations (e.g.



image patches) Y = [y1, . . . , yN ] ∈ RH×N , HMP learns a
M -word dictionary D = [d1, . . . , dM ] ∈ RH×M and the
corresponding sparse codes X = [x1, . . . , xN ] ∈ RM×N

that minimize the reconstruction error between the original
and the encoded data:

min
D,X
‖Y −DX‖2F s. t. ∀m ‖dm‖2 = 1 and ∀i ‖xi‖0 ≤ K,

where ‖ · ‖F is a Frobenius norm, xi are the sparse vectors,
‖·‖0 is a zero-norm that counts number of non-zero elements
in a vector, and K is the sparsity level that limits the num-
ber of non-zero elements in the sparse codes. The resulting
sparse codes are aggregated using spatial max-pooling.

After computing the HMP features for all tactile images
in the time series, pooling is performed on the temporal level
by constructing a temporal pyramid. The tactile sequence is
divided into sub-sequences of different lengths. For all sub-
sequences, the algorithm performs max-pooling of the HMP
features resulting in a single feature descriptor for each sub-
sequence. Combined with spatial pooling, this results in a
spatio-temporal pooling of the sparse codes.

Finally, the features of all the spatio-temporal cells are
concatenated to create a single feature vector FP for the
complete tactile sequence: FP = [C11, . . . , CST ], where S
is the number of spatial cells and T is the number of tem-
poral cells. After extracting the ST-HMP feature descriptor
from the tactile sequence, we use a linear Support Vector
Machine (SVM) to learn a classifier for the grasp stability
prediction [6].

Using multiple levels in the spatial and temporal pyramids
of ST-HMP increases the dimensionality of tactile features
substantially. When combined with learning regrasping be-
haviors for multiple objects, this approach leads to a large
number of parameters to learn for the regrasping mapping
function, which is usually a hard task for policy search algo-
rithms [3]. Thus, in this work, we add several modifications
to make this process feasible. In particular, we divide the
learning process into two stages: i) learning linear policies
for individual objects and ii) learning a high-dimensional
policy to generalize between objects.

Learning Linear Regrasping Policies for Individual Ob-
jects Once a grasp is predicted to fail by the grasp sta-
bility predictor, the robot has to place the object down and
regrasp it using the information acquired during the initial
grasp. In order to achieve this goal, we learn a mapping from
the tactile features of the initial grasp to the grasp adjust-
ment, i.e. the change in position and orientation between the
initial grasp and the regrasp. The parameters of this map-
ping function for individual objects are learned using rein-
forcement learning. We define the policy π(θ) as a Gaus-
sian distribution over mapping parameters θ with a mean µ
and a covariance matrix Σ. To reduce the dimensionality of
the input features, we perform a principal component anal-
ysis (PCA) [9] on the ST-HMP descriptors and use only the
largest principal components. The mapping function is a lin-
ear combination of these PCA features: (x, y, z, α, β, γ) =
Wφ with W ∈ R6×n and φ ∈ Rn, where W contains
the learned weights θ = (wx,1, . . . , wx,n, . . . , wγ,n) of the
features φ, and n is the number of principal components.

The reward R(θ) is computed by estimating the success of
the adjusted grasp using the grasp stability predictor. For op-
timizing the linear policy for individual objects we use the
relative entropy policy search (REPS) algorithm [10]. The
main advantage of this method is that, in the process of re-
ward maximization, the loss of information during a policy
update is bounded, which leads to a better convergence be-
havior.

The goal of REPS is to maximize the expected reward
J(π) of the policy π subject to bounded information loss
between the previous and updated policy. Information loss
is defined as the Kullback-Leibler (KL) divergence between
the two policies. Bounding the information loss limits the
change of the policy and hence, avoids sampling too far from
unexplored policy regions. Let q(θ) be the old policy and
π(θ) be the new policy after the policy update. We formulate
a constrained optimization problem:

max
π

J(π) =

∫
π(θ)R(θ) dθ

s. t.
∫
π(θ) log

π(θ)

q(θ)
dθ ≤ ε,

where, as mentioned before, J(π) is the total expected re-
ward of using the policy π(θ). The additional constraint
bounds the KL-divergence between the policies with the
maximum information lost set to ε. The updated policy is
proportional to the old policy:

π(θ) ∝ q(θ) exp
(
R(θ)

η

)
.

Therefore, we are able to compute the new policy parameters
with a weighted maximum-likelihood solution. The weights
are equal to exp (R(θ)/η), where the rewards are scaled by
the parameter η. By decreasing η one gives larger weights
to the high-reward samples. An increase of η results in more
uniform weights. The parameter η is computed according to
the optimization constraints by solving the dual problem.

Given a set of policy parameters {θ1, . . . ,θN} and corre-
sponding episode rewards, the policy update rules for µ and
Σ can be formulated as follows [3]:

µ =

∑N
i=1 diθi∑N
i=1 di

, Σ =

∑N
i=1 di (θi − µ) (θi − µ)

>∑N
i=1 di

with di = exp (R(θ)/η) .

Learning a General Regrasping Policy After the indi-
vidual linear policies have been learned, we train a larger
high-dimensional policy in a supervised manner using the
outputs of the individual policies. This is similar to the
guided policy search approach proposed in [11]. In our case,
the guidance of the general policy comes from the individ-
ual policies that can be efficiently learned for separate ob-
jects. As the general policy class we choose a neural net-
work with a large number of parameters. Such a policy has
enough representational richness to incorporate regrasping
behavior for many different objects. However, learning its
parameters directly using reinforcement learning requires a



large number of examples, whereas supervised learning with
already learned individual policies speeds up the process sig-
nificantly.

To generate training data for learning the general pol-
icy, we sample grasp corrections from the already learned
individual policies using previously collected data. Input
features and resulting grasp corrections are combined in a
“transfer” dataset, which is used to transfer the behaviors
to the general policy. In order to increase the amount of in-
formation provided to the general policy, we increase the
number of input features by extracting a larger number of
PCA components from the ST-HMP features. Using differ-
ent features in the general policy than in the original indi-
vidual policies is one of the advantages of our setting. The
individual policies provide outputs of the desired behavior,
while the general policy can have a different set of input fea-
tures.

Experimental Results
In our experiments, we use a Barrett arm and hand that
is equipped with three biomimetic tactile sensors (Bio-
Tacs) [12]. For extracting ST-HMP features, the BioTac
electrode values are laid out in a 2D tactile image accord-
ing to their spatial arrangement on the sensor.

Evaluation of grasp stability prediction The ST-HTMP
features use a temporal window of 650ms before and 650ms
after starting picking up the object. Our goal is to deter-
mine early in the lifting phase if the grasp is going to fail. In
this manner, the robot can stop the motion early enough to
avoid displacing the object, and hence, it can regrasp it later.
We evaluate our approach on three objects: a cylindrical ob-
ject, a box and a ball. We perform a 5-fold cross-validation
on 500 grasp samples for each object. The robot achieves
a grasp classification accuracy of 90.7% on the cylinder,
82.4% on the box and 86.4% on the ball.

Learning individual linear regrasping policies After
learning the grasp stability predictor, we evaluate the re-
grasping algorithm for individual policies. First, we eval-
uate individual regrasping policies. The robot performs a
randomly generated top grasp using the force grip con-
troller [13], and lifts the object. At the final stage of the ex-
periment, the robot performs extensive shaking motions in
all directions to ensure that the grasp is stable. The robot
uses the stability prediction to self-supervise the learning
process.

To evaluate the results of the policy search, we perform
100 random grasps using the final policies on each of the
objects that they were learned on. The robot has three at-
tempts to regrasp each object using the learned policy. Table
1 shows the percentage of successful grasps on each object
after each regrasp. Already after one regrasp, the robot is
able to correct the majority of the failed grasps, increasing
the success rate of the grasps from 41.8% to 83.5% on the
cylinder, from 40.7% to 85.4% on the box and from 52.9%
to 84.8% on the ball. Moreover, allowing additional regrasps
increases this value to 90.3% for two and 97.1% for three re-
grasps on the cylinder, 93.7% and 96.8% on the box, and to

Object Individual policies (# regrasps) Combined policy0 1 2 3
Cylinder 41.8 83.5 90.3 97.1 92.3
Box 40.7 85.4 93.7 96.8 87.6
Ball 52.9 84.8 91.2 95.1 91.4
New object 40.1 - - - 80.7

Table 1: Performance of the individual and combined re-
grasping policies.

91.2% and 95.1% on the ball. These results indicate that the
robot is able to learn a tactile-based regrasping strategy for
individual objects.

Evaluation of general regrasping policy After training
individual policies we create a “transfer” dataset with grasp
corrections obtained from the individual linear regrasping
policies for all objects. For each set of tactile features, we
query the respective previously-learned linear policy for the
corresponding grasp correction. We take the input features
for the individual policies from the unsuccessful grasps in
the open-source BiGS dataset [14]. The grasps in BiGS were
collected in an analogous experimental setup and can di-
rectly be used for creating the “transfer” dataset. In total,
the training set contains 3351 examples: 1380 for the cylin-
der, 1035 for the box and 936 for the ball. We use supervised
learning to learn a combined policy that mimics the behavior
of the individual policies.

To find the optimal architecture of the neural network, we
evaluated different networks with various depths and num-
bers of neurons to learn the nonlinear policy. The best perfor-
mance is achieved by using 20 ST-HMP PCA features as in-
puts. We have not observed any improvement of the approx-
imation accuracy when using more than one hidden layer.
This indicates that the ST-HMP algorithm already extracts
most of the distinctive features from the tactile data and we
do not require additional deep network architecture for our
task. The final neural network consists of one hidden layer
of 20 hidden units with tangent sigmoid activation functions,
20 input features and 6 outputs for grasp position and orien-
tation adjustments. The resulting number of parameters in
the generalized policy is 546. Such a high-dimensional pol-
icy would be hard to learn by directly employing reinforce-
ment learning. Our formulation as supervised learning, how-
ever, simplifies this problem and makes the learning process
with relatively small amounts of data more feasible.

Table 1 shows performance of the generalized policy
on the single objects. Interestingly, the combined policy
achieves better performance on each of the single objects
than the respective linear policies learned specifically for
these object after one regrasp. Furthermore, in cases of the
cylinder and the ball, the performance of the generalized pol-
icy is better than the linear policies evaluated after two re-
grasps. This shows that the general policy generalizes well
between the single policies. In addition, by utilizing the
knowledge obtained from single policies, the generalized
policy performs better on the objects that the single policies
were trained on.

The performance of the generalized policy on the box ob-



ject is slightly worse than on the two other objects. A no-
table difference in this case is the increased importance of
the gripper yaw angle with respect to the grasp performance.
The individual policy learned on the box learns to correct
the grasp such that the robot aligns its fingers with the box
sides while regrasping. However, this is not important for the
cylinder and the ball objects due to their symmetric shapes.
Therefore, the regrasping policy for the box could not ben-
efit from the two other policies when adjusting grasp in the
yaw direction.

We test performance of the generalized policy on a novel,
more complex object (see the bottom-right corner in Fig. 1),
which was not present during learning. The generalized pol-
icy improves the grasping performance significantly, which
shows its ability to generalize to more complex objects. Nev-
ertheless, there are some difficulties when the robot per-
forms regrasp on a part of the object that is different from
the initial grasp. In this case, the regrasp is incorrect for the
new part of the object, i.e. the yaw adjustment is subopti-
mal for the box part of the object due to the round grasping
surface (the lid) in the initial grasp.

During the experiments, we were able to observe many
intuitive corrections made by the robot using the learned re-
grasping policy. The robot was able to identify if one of the
fingers was only barely touching the object’s surface, caus-
ing the object to rotate in the hand. In this case, the regrasp
resulted in either rotating or translating the gripper such that
all of its fingers were firmly touching the object. Another no-
ticeable trend learned through reinforcement learning was
that the robot would regrasp the middle part of the object
which was closer to the center of mass, hence, more stable
for grasping. On the box object, the robot learned to change
its grasp such that its fingers were aligned with the box’s
sides. These results indicate that not only can the robot learn
a set of linear regrasping policies for individual objects, but
also that it can use them as the basis for guiding the gener-
alized regrasping behavior.

Conclusions
In this work, we proposed a method that is able to learn com-
plex high-dimensional policies by using examples from sim-
ple policies learned through reinforcement learning. In this
manner, we do not require large amounts of data to learn
complex policies. Instead, we employed supervised learning
techniques to mimic various behaviors of simple policies.

To show the effectiveness of our method, we applied it to
the problem of regrasping using tactile features. In particu-
lar, we used early grasp stability prediction during the initial
phases of the grasp and a regrasping behavior that corrects
failed grasps based on tactile perception and improves over
time.

Our experiments indicate that the combined policy
learned using our method is able to achieve better perfor-
mance on each of the single objects than the respective linear
policies learned using reinforcement learning specifically
for these objects after one regrasp. Moreover, the general
policy achieves approximately 80% success rate after one

regrasp on a novel object that was not present during train-
ing. These results show that our supervised policy learning
method applied to regrasping can generalize to more com-
plex objects.

As a next step, we plan to use the supervised policy learn-
ing method to learn other, more complex manipulation tasks.
We also hope to be able to extend the presented method with
other sensor modalities such as vision. Since the final re-
grasping policy is represented as a neural network, we be-
lieve that it is possible to combine other sensor modalities
in a multi-modal deep learning setup by enforcing the net-
works for each of the modalities to share a subset of their
parameters.
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