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I. INTRODUCTION

For robot to perform its tasks competently, robustly and in
the right context it has to understand the course of its actions
and their consequences. For example, imagine the robot
being tasked with the clean up of the breakfast table. The
robot is confronted with a heavily cluttered scene and has to
be able to tell waste, dirty, clean and valuable objects apart.
The robot shall be equipped with the knowledge that will,
for instance, stop it from throwing away an expensive item.
Herein proposed approach elevates robot’s perception skills
in that it utilizes its capabilities to interact with the clutter
of objects. This allows for better segmentation and finally
also better object recognition by means of constraining the
recognition to a region or regions of interest.

Similar to Katz et al. [1] and Bergstrom et al. [2], we
propose a system that uses a robot arm to induce motions
in a scene to enable effective object segmentation. Our
system employs a combination of the following techniques:
i) estimation of a contact point and a push direction of the
robot’s end effector by detecting the concave corners in the
cluttered scene, ii) feature extraction using features proposed
by Shi and Tomasi and tracking using optical flow, and iii)
a novel clustering algorithm to segment the objects.

Segmentation of rigid objects from a video stream of
objects being moved by the robot has been addressed by
Fitzpatrick [3] and Kenney et al. [4]. In contrast, our arm
motion is not pre-planned but adapts to the scene, we make
use of the 3D data to segment the object candidates from the
background and we use a novel clustering approach for the
segmentation of textured objects.

Overview of the whole system is shown in Fig. 2. The
system will be demostrated live during the workshop.

II. ESTIMATION OF CONTACT POINT AND PUSH
DIRECTION

Since most commonly encountered household items have
convex outlines when observed from above, our system uses
local concavities in the 2D contour of an object group as
an indicator for boundaries between the objects. The robot
separates objects from each other by pushing its end effector
in between these boundaries.

A. Contact Points from Concave Corners

We restrict the problem of finding a contact point to the
table plane. Our algorithm employs 2D-image processing
techniques to select contact point candidates. The table
plane is estimated from the depth-camera’s point cloud data

Fig. 1. Top: PR2 robot successfully picking-up the object after segmenting
in it in clutter using herein proposed object segmentation algorithm.

using RANSAC and separated from the object points. The
remaining cloud points are projected into a virtual camera
view above the table. Since the projected cloud points are
sparse, we employ standard morphological operators and 2D-
contour search to identify a closed region, R, corresponding
to the group of objects.

This region’s outer contour is then searched for strong
local directional changes by applying a corner detector and
subsequently the corners that are placed at local concavities
are selected.

B. Push Direction and Execution

The push direction at a corner is set to be parallel to
the eigenvector corresponding to the larger eigenvalue of
the Shi-Tomasi covariance matrix. Intuitively, the dominant
eigenvector will align with the dominant gradient direction.
However, at a corner with two similar gradient responses
in two directions, the eigenvector becomes the bisector. As
only corners with roughly equal eigenvalues are chosen as
potential contact point candidates, the eigenvector of each
contact point candidate will bisect the angles of the contour
at the corner location.

III. OBJECT SEGMENTATION USING FEATURE
TRAJECTORIES

Once the robot′s end effector touches the objects, the
resulting object motions are used to discriminate between
the different items on the table. Feature points are tracked
in the scene and the resulting feature point trajectories are
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Fig. 2. The system proposed in the paper consists of three main nodes: a node for estimating the initial contact point and the push direction, a node
that extracts 2D-features and tracks them while it moves the robot arm in the push direction, and finally an object clustering node that assigns the tracked
features to objects.

clustered. The clustering is based on the idea that features
corresponding to the same objects must follow the same
translations and rotations.

A. Feature Trajectory Generation using Optical Flow

We take advantage of the objects’ texture properties by
extracting i = 1...N Shi-Tomasi features at the pixel loca-
tions {pi,0}Ni=1 from the initial scene at time t = 0, i.e.
before an interaction with the robot took place. The feature
locations correspond to responses of the Shi-Tomasi feature
detector. When the robot’s end effector interacts with the
object, a Lucas-Kanade tracker is used to compute the optical
flow of the sparse feature set. Using the optical flow, each
feature’s position pi,t is recorded over the image frames at
time t = 0...T while the robot is interacting with the objects.
That is, for each successfully tracked feature i, a trajectory
Si = {pi,t}Tt=0 is obtained.

B. Randomized Feature Trajectory Clustering with Rigid
Motion Hypotheses

After calculating the set of all feature trajectories S ≡
{Si}Ni=1, the goal is to partition this set such that all features
belonging to the same object are assigned the same object
index ci ∈ {1, ..,K}, where the number of objects K is not
known a priori.

We take advantage of the rigid body property of objects
and assume that each subset of the features trajectories S
belonging to the same object k are subjected to the same
sequence of rigid transformation Ak ≡ {Ak,t}T−1t=0 , i.e. we
cluster features with respect to how well rigid transforma-
tions can explain their motions. As the objects only move on
the table plane, we restrict a possible rigid transformation
A to be composed of a 2D-rotation R, a 2D-translation
t and a scaling component s, i.e. A = s · [R|t]. The
scaling component compensates for the changes in size of
the projected objects in the camera image. The actual scaling

Algorithm 1: Randomized feature trajectory clustering

1 Input: Set of feature trajectories S ≡ {Si}Ni=1 where
Si = {pi,t}Tt=0

2 Output: object cluster count K, object cluster
assignments c = [ci]

N
i=1 where ci ∈ {1, ..,K}

3 for m := 1 to M do
4 km := 1, Sm := S
5 while |Sm| ≥ 2 do
6 draw 2 random trajectories Su,Sv ∈ Sm
7 generate sequence of rigid transformations:

Akm ≡ {Akm,t}T−1t=0 from (Su,Sv)
8 for Sj in Sm do
9 sum squared residuals w.r.t to Akm :

rkm,j :=
∑T−1

t=0 ‖pj,t+1 −Akm,tpj,t‖22
10 if rkm,j < THRESHOLD then
11 Sm := Sm \ {Sj}

12 km := km + 1

13 Km := km
14 for Si in S do
15 Assign each trajectory to best matching rigid

transformation sequence:
c∗m,i := argmin{1,..,km,..,Km−1} rkm,i, where
rkm,i :=

∑T−1
t=0 ‖pi,t+1 −Akm,tpi,t‖22

16 Select best overall matching set of rigid transform

sequences: m∗ := argminm
∑Km

km=1

∑
i rkm,i·1[c∗m,i

=km]∑
i 1[c∗m,i

=km]

17 Return: K := Km∗ , c :=
[
c∗m∗,i

]N
i=1

is not linear due to the perspective view, however, the error
resulting from this linearization is small as the objects are
displaced only in small amounts.



Fig. 3. Test scenes 1 to 8 from left to right. Top row: original scenes, middle row: contact point estimation, bottom row: segmentation after the first
push cycle. Please note, that successfully segmented objects were removed from the scene and the contact point estimation and segmentation cycle were
repeatedly executed.

The clustering algorithm we propose is outlined in Alg. 1,
and combines a divisive clustering approach with RANSAC-
style model hypothesis sampling. At the core of the algorithm
(lines 4–12), we randomly draw 2 tracked features u,v
and estimate a sequence of rigid transformations A1 from
their optical flow motions as first model hypothesis. The
feature trajectories Si that can be explained well by A1

are considered ”model inliers” and are removed from set of
feature trajectories. From the remaining set, again 2 features
are drawn to create a second model hypothesis A2 and all
inliers are removed. This process repeats until there are not
enough features left to create a new model hypothesis. This
process results in K hypotheses.

IV. EXPERIMENTS

Our system was deployed on Willow Garages PR2 robot.
Depth images were taken from a Kinect sensor mounted on
the robots head and the PR2s built-in 5-megapixel camera
was used for capturing images for feature extraction and
tracking.

A. Segmentation of Objects in Cluttered Scenes

We evaluated our system on eight tabletop scenes with
the cluttered background shown in Fig. 3. For each scene,
the original setup of objects, the detected contact point
candidates and push directions, and the feature clusters after
the first push cycle are shown in the respective row. Across
all runs using corner-based pushing 89% of all objects were
segmented successfully.

The segmentation of the scenes took 1.047 seconds on
average to compute, which also demonstrates that our algo-
rithm is suitable for real world settings.

B. Grasping

We also ran a grasping experiment on the scene 8 (Fig.3).
In this experiment, we use low-quality image from the Kinect
for the segmentation and an associated point cloud for the

calculation of the object pose. The accompanying video1 is
showing the above mentioned experiment.

C. Open Source Code

We provide the software2 and documentation3 as an open
source. In the workshop we plan to demostrate the segmen-
tation of textured objects using Kinect sensor and manually
interaction with the objects.

V. FUTURE WORK

The results show applicability of our system for objects
of various sizes, shapes and surface. Future work includes
integrating our approach with other object segmentation
techniques in order to account for textureless objects and
to further improve the segmentation rate. We also plan to
integrate an arm motion and a grasp planner which will
enable the robot to perform robust grasping and deal with
even more complex scenes.
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