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ABSTRACT. We introduce an optimization-based control approach that enables a team of robots to cooperatively
track a target using onboard sensing. In this setting, the robots are required to estimate their own positions as
well as concurrently track the target. Our probabilistic method generates controls that minimize the expected
future uncertainty of the target. Additionally, our method efficiently reasons about occlusions between robots
and takes them into account for the control generation. We evaluate our approach in a number of experiments in
which we simulate a team of quadrotor robots flying in three-dimensional space to track a moving target on the
ground. Our experimental results indicate that our method achieves 4 times smaller average maximum tracking
error and 3 times smaller average tracking error than the next best approach in the presented scenario.
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1. INTRODUCTION

Tracking a moving target has many potential applications
in various fields. For example, consider a search and rescue
scenario where autonomous ground robots are deployed
to assist disaster victims but they are not able to localize
themselves in an unknown environment. In this case, one
could use flying robots that due to their higher altitude can
take advantage of, e.g., GPS signals on the one hand and
can help to localize the ground robots by observing them
on the other hand. Although it comes at the cost of higher
complexity in motion planning, using multiple coopera-
tively controlled robots in this setting provides undisputed
advantages, such as increased coverage, robustness to fail-
ure and reduced uncertainty of the target.

Consider a scenario depicted in Fig. 1 where a team
of aerial robots equipped with onboard cameras is tasked
with tracking and estimating the position of a mobile robot
with respect to a global frame of reference. The ideal
cooperative control algorithm for this team would take into
account all visibility constraints and uncertainties in order
to establish a configuration of quadrotors that enables to
propagate position information from the global sensors
through the quadrotors to the target.

The novel contributions of this paper are as follows: a)
we extend the approach from [1] by taking into account
sensing discontinuities caused, for example, by occlusions
in different multi-robot configurations in a manner that is
amenable to continuous optimization, and b) we generate
controls in 3 dimensions for all the quadrotors, hence there
is no need for additional reasoning about potential multi-
robot sensing topologies. We evaluated our approach in
a number of simulations and compared it to our previous
method in which we introduced cooperative multi-robot
control with switching of sensing topologies [2].

FIGURE 1. Three quadrotors cooperatively tracking a target
following a figure-eight trajectory (blue line). The green
ellipsoids show the 3-dimensional covariances of quadrotors’
positions. The green ellipse represents the 2-dimensional
covariance of the position of the target. Magenta lines depict
the measurements between quadrotors and the global camera
(blue cube at the top). How should the quadrotors move in
order to minimize the uncertainty of the target?

2. RELATED WORK

The task of cooperative target tracking has been addressed
in various ways. Many researchers considered central-
ized [3, 4], decentralized [5, 6], and distributed [7, 8]
approaches to control multiple aerial or ground robots.
Nevertheless, all of the above approaches do not take into
account the position uncertainty of the robots that are de-
ployed to perform the tracking task. The position of the
robots is assumed to either be known or independently
obtained with high accuracy. In this work, we consider
both, the position uncertainty of the tracked target as well
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as the uncertainty in the robots’ poses, which effectively
eliminates the need of a highly accurate external tracking
system.

The problem of target localization is very similar to the
task of target tracking. There have been many authors
that worked on target localization [9–11] in a multi-robot
scenario with onboard sensing. It is worth noting that
these approaches are implemented in a distributed fashion
which makes them well-suited for multi-robot scenarios
with limited communication. One of the simplifications
introduced in these approaches, however, is to limit the
robots to planar movements [2] and disable the possibility
that the robots can be perceived by each other. In our work,
we relax these assumptions and show how to cope with
occlusions between different robots.

3. APPROACH
We propose a centralized approach where we jointly esti-
mate the positions of the quadrotors and the target using an
EKF. First, we describe our state estimation technique to
then focus on the control generation and reasoning about
occlusions.

3.1. STATE ESTIMATION WITH EKF
3.1.1. SYSTEM PARAMETRIZATION

The state at time t consists of the individual quadrotor
poses x(i)

t , i ∈ [1, n] and the target pose x(targ)
t . Let u(i)

t

be the control input applied to the ith robot at time t. The
joint state and control input are defined as:

xt = [x(1)
t , . . . ,x(n)

t ,x(targ)
t ] (1)

ut = [u(1)
t , . . . ,u(n)

t ] (2)

Let Σt be the uncertainty covariance of the joint state.
The dynamics and measurement models for the joint

state are given by the stochastic, differentiable functions f
and h:

xt+1 = f(xt,ut,qt), qt ∼ N(0, Qt) (3)
zt = h(xt, rt), rt ∼ N(0, Rt) (4)

where qt is the dynamics noise, rt is the measurement
noise, and they are assumed to be zero-mean Gaussian
distributed with state-dependent covariances Qt and Rt,
respectively.

We consider two types of sensors and corresponding
measurements: absolute (global) measurements, e.g., GPS,
and relative measurements between two quadrotors or a
quadrotor and the target, e.g., distance or relative pose
measurements. The stochastic measurement function of
the absolute sensors is given by:

z(i)
t = h(i)(x(i)

t , r(i)
t )

while the relative sensor model is:

z(i,j)
t = h(i,j)(x(i)

t ,x(j)
t , r(i,j)

t )

All measurement functions can be naturally extended for
the joint state [12].

3.1.2. UNCERTAINTY MODEL

Given the current belief (xt,Σt), control input ut and
measurement zt+1, the beliefs evolve using an EKF.

In order to model the discontinuity in the sensing do-
main, which can be caused either by a limited field of view
or occlusions, we follow the method from [1] and intro-
duce a binary vector δt ∈ Rdim[z]. The kth entry in the
vector δt takes the value 1 if the kth dimension of zt is
available and a value of 0 if no measurement is obtained.
We detail the method for computing δt in Sec. 3.3.

The EKF update equations are as follows:

xt+1 = f(xt,ut,0) +Kt(zt − h(xt)) (5a)

Σt+1 = (I −KtHt)Σ−
t+1 (5b)

Kt = Σ−
t+1H

ᵀ
t ∆t[∆tHtΣ−

t+1H
ᵀ
t ∆t +WtRtW

ᵀ
t ]−1∆t

(5c)

Σ−
t+1 = AtΣtA

ᵀ
t + VtQtV

ᵀ
t (5d)

At = ∂f
∂x (xt,ut,0), Vt = ∂f

∂q (xt,0) (5e)

Ht = ∂h
∂x (xt+1,0), Wt = ∂h

∂r (xt+1,0) , (5f)

where ∆t = diag[δt] and zt is a measurement obtained at
time step t.

It is worth noting that the Kalman gain update in Eq. 5c
includes the binary matrix ∆t to account for discontinuities
in the sensor domains. Furthermore, we apply the Markov
assumption [13] that the measurements are conditionally
independent given the joint state. Thus, the individual
measurements can be separately fused into the belief using
the EKF update equations.

3.1.3. DYNAMICS MODEL

We assume that the orientation of the quadrotors is
fixed and one can only control their 3D position.
The dynamics of an individual quadrotor is given by:
f (i)(x(i),u(i),q(i)) = x(i) + u(i)∆t + q(i) where
x(i),u(i) ∈ R3 are the 3D position and velocity and ∆t is
the length of a time step. For modeling the target motion,
one can apply a standard uncontrolled motion model. In
this work, we assume a constant velocity motion model.

3.1.4. OBSERVATION MODEL

The cameras are assumed to be at the center of each quadro-
tor facing down. The absolute sensor provides the 3D posi-
tion of the observed quadrotor/target as a measurement:

h(i)(x(i)
t , r(i)

t ) = x(i)
t + r(i)

t

The relative sensor model provides the position of the
(observed) jth quadrotor/target relative to the (observing)
ith quadrotor:

h(i,j)(x(i)
t ,x(j)

t , r(i,j)
t ) = (x(j)

t − x(i)
t ) + r(i,j)

t .

3.2. CONTROL GENERATION USING
OPTIMIZATION

At each time step twe seek a set of control inputs ut:T =t+h

that for a time horizon h minimizes the uncertainty of the
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FIGURE 2. Signed distance if the quadrotor/target is in-
side the view frustum (left) and outside the view frustum
(right).

target while penalizing collisions and the control effort.
The final cost function is composed as follows:

ct(xt,Σt,ut) = α tr(Σ(targ)
t ) + βccollision(xt) + γ||ut||22

cT (xT ,ΣT ) = α tr(Σ(targ)
T ) + βccollision(xT )

ccollision(x) =
n∑

i=1

n∑
j=i+1

max(||x(j) − x(i)||22 − dmax, 0)

where α, β, and γ are user-defined scalar weighting pa-
rameters and dmax is the maximum distance for which the
collision cost takes effect.

To eliminate the stochasticity of the cost functions, we
follow Platt et al. [14] and assume the maximum likeli-
hood observation is obtained at each time step. The final
objective function is:

min
xt:T ,ut:T −1

E[cT (xT ,ΣT ) +
T −1∑

t

ct(xt,Σt,ut)] (6)

s. t. xt+1 = f(xt,ut,0)
xt ∈Xfeasible, ut ∈ Ufeasible

x0 = xinit, Σ0 = Σinit

We used sequential quadratic programming (SQP) to
locally optimize the non-convex, constrained optimization
problem [15]. Given the output controls ut:T −1 computed
using trajectory optimization, we follow the model pre-
dictive control paradigm [16] by executing a subset of the
optimized controls and then replanning.

3.3. REASONING ABOUT OCCLUSIONS

The absolute/relative position of a quadrotor/target may
not be observable due to occlusions from other quadrotors
and the limited field-of-view of the sensor. As previously
mentioned, we model this discontinuity with the binary
variable δ (according to [1]). In order to make the objective
function differentiable, we approximate δ with a sigmoid
function. It is worth noting that this is only required in
the optimization step, the state estimation step remains as
defined previously.

Let sd(i,j)(x) be the signed distance of x(j) to the field-
of-view of the jth quadrotor (see Fig. 2). The signed dis-
tance is negative if the jth quadrotor is visible and positive
otherwise. We introduce the parameter η which determines
the slope of the sigmoidal approximation. The sigmoidal
approximation of the measurement availability δ is given
by:

FIGURE 3. Signed distance function in the presence of occlu-
sions. First, we determine the shadows of all the occlusions
such that the resulting field-of-view (the shaded area) is cal-
culated. The signed distance is computed as the distance to
the field-of-view.

δ(i,j) = 1
1 + exp[−η · sd(i,j)(x)]

(7)

For more details on the sigmoidal approximation of the
availability of the measurement we refer the reader to [1].

To calculate the signed distance of x(j) to the field-
of-view of x(i), we first represent the field-of-view as a
truncated view frustum with a minimum and maximum
distance given by the sensor model as depicted in Fig. 3.
If x(j) is outside of the view frustum, sd(i,j)(x) is the dis-
tance of x(j) to the view frustum as shown in the right part
of Fig. 2. If x(j) is inside the view frustum and there are
no occlusions, the signed distance is computed as shown in
the left part of Fig. 2. In the presence of occlusions, we first
determine the shadows of all the occlusions in the plane of
x(j). In the next step, we use an open source 2D polygon
clipping library - GPC1 to generate the 2D polygon field-of-
view, and then calculate the signed distance. Fig. 3 shows
an example of a signed distance function in the presence
of an occlusion.

4. EVALUATION AND DISCUSSION

We evaluated our approach in a number of simulation ex-
periments. The simulation environment consists of a global
down-looking camera attached 4 meters above the origin
of the coordinate system, a ground robot target and a vary-
ing number of quadrotors equipped with down-looking
cameras. Each quadrotor is controlled through the veloc-
ity commands u(i) = [vx, vy, vz]. The state of the target
consists of its position and velocity x(targ) = [x, y, vx, vy]
and the target moves on the XY-plane in a figure-eight tra-
jectory (see Fig. 1). The length of the simulation time step
is equal to 0.1s. All camera sensors in this setup have the
same properties as described in Sec. 3.1.4, and can detect
objects in a 3-meter high truncated pyramid. Consequently,
the global camera is not able to see the target directly. The
camera measurement standard deviation is set to 0.02m for
translation and 0.001rad for orientation. In addition, the
measurement covariance scales quarticly with the distance
to the measured quadrotor. In order to make simulations

1http://www.cs.man.ac.uk/~toby/gpc/
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FIGURE 4. Comparison between not taking occlusions into
account in the optimization step (top) and accounting for oc-
clusions using the signed distance function presented in this
work (bottom). Statistics and 95% confidence intervals over
10 runs with 3 quadrotors. Taking occlusions into account
is beneficial especially at the spots right below the global
camera (i.e. start, middle and the end of the trajectory).
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FIGURE 5. Target tracking results for our previous level-
based approach [2] (top) and the hereby presented method
without explicitly reasoning about sensing topologies (bot-
tom). Statistics and 95% confidence intervals over 10 runs
with 3 quadrotors.

more realistic, we also introduce motion noise with stan-
dard deviation equal to 0.1m/s. An example of a system
setup with the field of view of each camera is depicted in
Fig. 1. Our system aims to estimate the position of the
target as accurately as possible by actively controlling the
quadrotors.

4.1. EXPERIMENTS

4.1.1. SAMPLING VS. OPTIMIZATION EXPERIMENT

We compare our optimization based control generation
with random sampling and lattice planners. Random sam-
pling methods randomly sample controls to generate tra-
jectories while lattice planners draw samples from a prede-
fined manifold, which in our case was a sphere with radius
equal to the maximum allowed control effort. For both
methods, the cost of each resulting trajectory is evaluated
and the controls corresponding to the minimum cost tra-
jectory are executed. Fig. 6 shows the statistical results of
the comparison between the sampling method, lattice sam-
pling method and our approach for 3 quadrotors. In order
to make a fair comparison for the sampling methods, we
chose the number of samples such that the execution times
per one optimization step of all the methods were similar
and we averaged the results over 10 runs. One can notice
a significantly larger tracking error and the trace of the
target covariance in performance of both of the sampling
methods compared to the trajectory optimization approach.

4.1.2. OPTIMIZATION WITH OCCLUSIONS EXPERIMENT

To evaluate the importance of considering occlusions, we
evaluated our method with and without reasoning about oc-
clusions for a team of 3 quadrotors (Fig. 4) and measured
the target covariance and target tracking error. Of note is
the higher uncertainty in Fig. 4(top) than Fig. 4(bottom)
at the beginning, middle, and end of the target trajectory.
When not considering occlusions, the error is higher at
these segments because these segments are directly under-
neath the global camera, which leads to a crowded space.
In this scenario, when not considering occlusions in the
optimization, the quadrotors block each other’s views, re-
sulting in worse tracking error as compared to considering
occlusions in the optimization.

4.1.3. TOPOLOGY SWITCHING EXPERIMENT

We compare the method proposed in this paper to our pre-
vious target tracking method that introduced level-based
sensing topologies and an efficient topology switching al-
gorithm [2]. In this approach, the quadrotors are organized
on different levels with an assumption that each level can
only sense the adjacent level below it. At each time step
the algorithm determines the planar controls for each of
the quadrotors as well as determines whether to switch to
one of the neighboring topologies by moving one of the
quadrotors by one level up or down. This approach was
introduced in order to avoid the reasoning about occlusions
between quadrotors at different altitudes.

In order to make our approach and the level-based ap-
proach comparable for standard quadrotors, we introduce
a length 3 time step delay for the topology switch in order
to realistically simulate a real quadrotor adjusting altitude.
The performance of both algorithms is depicted in Fig. 5.
The quadrotors perform better when explicitly reasoning
about occlusions with our approach. This phenomenon
can be explained by the fact that our novel approach can
create a greater variety of sensing topologies compared to
our previous approach.
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FIGURE 6. Comparison between different sampling approaches and the optimization approach presented in this paper. From left to
right: random sampling, lattice sampling and optimization. Evaluation measures are shown with 95% confidence intervals over 10
runs with 3 quadrotors. The optimization approach yields better results than the other presented methods.

level-based lattice planning random sampling our approach
avg. max tracking error [m] 0.0156± 0.024 0.41± 1.00 0.027± 0.028 0.0037± 0.005
avg. tracking error [m] 0.0030± 0.0036 0.037± 0.073 0.0035± 0.0044 0.0012± 0.0007

TABLE 1. Quantitative results for the experiments with 3 quadrotors. Max target tracking error was averaged over 10 runs, target
tracking error was averaged over all time steps and 10 runs. Our approach yields significantly smaller error than the other baseline
methods.

4.1.4. AVERAGE ERROR COMPARISONS

Table 1 shows the statistics of the average tracking er-
ror and maximum average tracking error for different ap-
proaches tested in our experiments. It is worth noting that
our approach achieved 4 times smaller average maximum
tracking error than the next best method, the level-based
approach. Our method also achieves a 3 times smaller av-
erage tracking error compared to the level-based approach.

5. CONCLUSIONS AND FUTURE WORK
We presented an optimization-based probabilistic multi-
robot target tracking approach that efficiently reasons
about occlusions. We evaluated our approach in a num-
ber of simulation experiments. We have compared our
method to other baseline approaches such as random sam-
pling, lattice sampling, and our previous work on sensing
topologies [2]. Our experimental results indicated that our
method achieves 4 times smaller average maximum track-
ing error and 3 times smaller average tracking error than
the next best approach in the presented scenario.

In future work, we plan to extend our centralized plan-
ning approach to fully decentralized, distributed planning.
This is advantageous in multi-robot settings with limited
communication. Finally, we would like to further demon-
strate the applicability of our approach in a real robot
scenario.
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