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Abstract—In this work, we develop an observability-aware
trajectory optimization framework for nonlinear systems that
produces trajectories well suited for self-calibration. Our method
reasons about the quality of observability while respecting system
dynamics and motion constraints. Experiments on a simulated
quadrotor with a IMU-GPS sensor suite demonstrate the benefits
of our method compared to a covariance-based approach and
multiple heuristic approaches. Our method is considerably faster
than the covariance-based approach and achieves better results
than any other approach in the self-calibration task.

I. INTRODUCTION

State estimation is a core capability for autonomous robots,
serving as the foundation for control, higher-level planning,
and perception. In addition to the states directly used for
system control, such as position, velocity, and attitude, recent
work also estimates internal states that calibrate the sensor
suite [8]. These self-calibration states include extrinsic pa-
rameters such as the position of one sensor with respect to
another, and intrinsic parameters such as measurement bias.

Estimating these states online, rather than in an offline
calibration process, makes the system simpler and more robust
against parameter changes, e.g. from collisions. However, it
comes at a cost: the dimensionality of the state vector increases
while the number of measurements remains unchanged. This
often leads to a scenario where a “natural” trajectory, such as
one from an energy-minimizing planner, does not excite the
system sufficiently to keep all states observable.

In this work, we present a framework that optimizes tra-
jectories for self-calibration. We develop a cost function that
explicitly addresses the quality of observability of system
states. Our method takes into account motion constraints and
yields an optimal trajectory for fast convergence of the self-
calibration states. The presented theory applies to any non-
linear system and is not specific to any state estimator. While
past approaches have focused on analyzing the environment to
compute where to move to obtain informative measurements
for state estimation [1, 2, 3, 6], we assume the presence of
accurate measurements and focus on how to move to generate
motions that render the full state space observable.

We evaluate our method with several experiments on a
simulated Unmanned Aerial Vehicle (UAV) with IMU-GPS
sensor suite. An example of the performance of the self-
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Fig. 1. Root Mean Squared Error (RMSE) convergence of EKF self-
calibration (accelerometer and gyroscope biases ba, b! and position of
the GPS sensor pp

i ) state estimates for a) figure-eight trajectory, b) star
trajectory, c) optimal trajectory from our method. We introduced additional
yaw motion for a) and b) trajectories in order to improve state estimation of
these heuristics.

calibration framework is presented in Fig. 1, where an op-
timized trajectory outperforms common calibration heuristics
in terms of speed and accuracy of state convergence.

II. NONLINEAR OBSERVABILITY ANALYSIS

In control theory, the observability of a system is defined as
the possibility to compute the initial state of the system given
a sequence of inputs and measurements. Observability of a
nonlinear system along a specific trajectory can be determined
from the rank of the observability matrix. However, this is a
binary test and does not quantify how well observable the



system is. This limits its utility for gradient-based methods.
Krener and Ide [4] introduced continuous measures of

observability based on the local observability Gramian. Unfor-
tunately, the local observability Gramian is difficult to compute
for an arbitrary nonlinear system. To deal with this problem,
[4] then introduced the empirical local observability Gramian
as a numerical approximation. However, this approximation
presents problems for our quadrotor application. In the stan-
dard formulation of quadrotor state estimation, IMU odometry
is treated as a control rather than a measurement. Thus, the
empirical local observability Gramian can only capture the
effect of IMU bias implicitly via double integration. This
introduces numerical errors that cannot be distinguished from
the true effect of the IMU biases.

To overcome this limitation, we introduce a novel approx-
imation of the local observability Gramian that analytically
captures input-output dependencies not visible in the sensor
model. We achieve this property by incorporating higher
order Lie derivatives from the nonlinear observability matrix.
Intuitively, at each time step, we evaluate the local Taylor
expansion of the sensor model at a fixed time horizon to ap-
proximate how the system measurements change with respect
to a small perturbation of the self-calibration states. We use
this approximation to estimate the local observability Gramian
which is integrated over the entire trajectory.

III. TRAJECTORY REPRESENTATION AND OPTIMIZATION

We represent a trajectory by a piecewise polynomial in the
system’s minimal set of differentially flat variables. As shown
in Müller and Sukhatme [7], with an appropriately high poly-
nomial degree, piecewise polynomial trajectory planning forms
an underdetermined linear system. Therefore, we compute an
initial solution with the Moore-Penrose pseudoinverse, and use
the remaining null space of the system as the optimization
space. Optimizing in the null space transforms the problem
into an unconstrained optimization. However, we must still
add constraints to keep the trajectories physically plausible.

We perform a local optimization over this space using Se-
quential Quadratic Programming. The physical limitations of
the system, such as maximum motor torques, are expressed as
nonlinear inequality constraints using the Barrier method [5].
The cost function is the smallest singular value of our novel
local observability Gramian approximation.

IV. EXAMPLE APPLICATION TO UAV WITH IMU-GPS

We demonstrate the presented theory on a simulated quadro-
tor with a 3-DoF position sensor (e.g. GPS) and a 6-DoF iner-
tial measurement unit (IMU). This is a simple, widely popular
sensor suite, but it presents a challenging self-calibration task,
as there is limited intuition for what kind of trajectory would
make the states well observable.

The simulated quadrotor performs state estimation with
an indirect Extended Kalman Filter. The filter state includes
position, velocity, orientation quaternion, IMU-GPS offset, and
biases of the accelerometer and gyroscope. The differentially
flat variables used for trajectory representation are x, y, z

−150 −100 −50 0
0

0.005

0.01

0.015

cost

 f
in

a
l R

M
S

E
 b

a
[m

/s
2
]

−150 −100 −50 0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

cost

 f
in

a
l R

M
S

E
 p

ip
[m

]

PL−random
our method
figure 8
star

Fig. 2. Self-calibration task: final RMSE values for the accelerometer bias
ba and the GPS position in the IMU frame pp

i obtained using optimization
(green) and 3 different heuristics: star and figure eight trajectories from Fig. 1
and randomly sampled trajectories that are close of the physical limits of the
system (magenta).

position and yaw. To ensure that trajectories are physically
plausible we place inequality constraints on 3 entities: the
thrust-to-weight ratio, angular velocity, and angular accelera-
tion. IMU-GPS offset and IMU biases are set to fixed realistic
nonzero values, but the EKF is initialized with the belief that
all self-calibration states are zero. Thus, a bad self-calibration
trajectory will fail to converge the state estimate of the system.

Fig. 2 shows optimization results. We generated random
closed-loop self-calibration trajectories (PL-random) that are
close to the system’s physical limits. We then used each
random trajectory as an initial condition for nonlinear op-
timization to produce an optimized trajectory (our method).
We also compared against common heuristic trajectories (star
and figure 8). The left plot shows results from optimizing for
the accelerometer bias ba, and the right for IMU-GPS offset
pp
i . Initial tests showed that the gyroscope bias converges

quickly for almost any trajectory, so did not include it in
the evaluation. While the star trajectory and some of the
PL-random trajectories perform well on ba, our approach
outperforms all other methods on pp

i .
A baseline method for comparison is minimizing the trace of

the EKF covariance estimate at the end of the trajectory. This
method is computationally heavy, taking ⇠80x longer in our
Matlab implementation. It was thus infeasible to compute the
covariance optimization for all 50 PL-random initial trajecto-
ries. Instead, we compared a single representative trajectory
from each optimization framework, and found comparable
results. We omit these results due to space constraints. We
also omit an experimental evaluation on a waypoint navigation
task, where our method was able to significantly improve the
final state estimate compared to a minimum-snap trajectory.

V. CONCLUSION

Our initial work shows encouraging results on the simu-
lated quadrotor with IMU-GPS sensor suite. Since a major
advantage of the presented method is its generality, we plan
to expand our work with experiments on other sensor suites,
including a GPS-denied visual-inertial navigation system.
Furthermore, we plan to compare more thoroughly against
covariance-based optimization, and to test our approach on
a real quadrotor and other robotic systems.
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