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Abstract— Fusing data from multiple sensors on-board a
mobile platform can significantly augment its state estimation
abilities and enable autonomous traversals of different domains
by adapting to changing signal availabilities. However, due to
the need for accurate calibration and initialization of the sensor
ensemble as well as coping with erroneous measurements that
are acquired at different rates with various delays, multi-sensor
fusion still remains a challenge.

In this paper, we introduce a novel multi-sensor fusion
approach for agile aerial vehicles that allows for measurement
validation and seamless switching between sensors based on
statistical signal quality analysis. Moreover, it is capable of
self-initialization of its extrinsic sensor states. These initialized
states are maintained in the framework such that the system can
continuously self-calibrate. We implement this framework on-
board a small aerial vehicle and demonstrate the effectiveness
of the above capabilities on real data. As an example, we fuse
GPS data, ultra-wideband (UWB) range measurements, visual
pose estimates, and IMU data. Our experiments demonstrate
that our system is able to seamlessly filter and switch between
different sensors modalities during run time.

I. INTRODUCTION

Multi-rotor Unmanned Aerial Vehicles (UAVs) are inher-
ently unstable platforms and therefore require uninterrupted
and accurate state estimation at a high frequency to facilitate
safe control. Using multiple sensors provides redundancy,
improves robustness of state estimation and enables the
platform to perform cross-domain missions. However, all
sensors must be calibrated with respect to each other, and
their contributions properly merged, in order to optimally
perform state estimation. In addition, the system should be
able to automatically detect and ignore faulty measurements
or sensors. All these requirements still render multi-sensor
fusion a challenge. Nonetheless, if implemented correctly,
such a multi-sensor fusion framework can significantly con-
tribute to the robustness, versatility, and usability of the
platform. For example, a UAV could detect the moment it
enters a GPS-obstructed environment and stop including the
GPS measurements that otherwise can negatively influence
the state estimate.

In this paper, we propose a self-calibrating multi-sensor
state-estimation system where additional sensors can be
added in a modular fashion. In particular, we focus on fusing
vision, GPS, and UWB range measurements with no need for
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Fig. 1. The Asctec Hummingbird UAV used during the experiments.

external calibration or initialization. Moreover, we include
a probabilistic sensor switching ability in the system and
propose a statistical measurement validation algorithm that
finds the optimal sensor suite for any given condition. We
argue that the ability to dynamically make decisions about
sensor information on the fly is essential for deploying UAVs
in uncertain environments, and the contributions of this paper
are a step towards this goal.

The key contributions of our approach are: a) a contin-
uously self-calibrating modular multi-sensor fusion frame-
work, b) a probabilistic switching ability and statistical
measurement validation that selects the correct sensor suite in
the given conditions, c) self-initialization and calibration of
the range sensor states using data gathered during the initial
phase of the flight. We evaluate our approach experimentally
using the AscTec Hummingbird UAV depicted in Fig. 1. As
a use case, we consider take-off and precision landing on a
recharging station where, in addition to the IMU, the UAV
has access to three sensor modalities: GPS, vision and range.
The experimental sensor setup for this scenario is depicted
in Fig. 2.

II. RELATED WORK

Multi-sensor fusion for aerial vehicles has recently re-
ceived increased attention. Typically, indirect formulations
of Extended (EKF) [7], or Unscented (UKF) Kalman Fil-
ters [13] are used as theoretical frameworks for sensor fusion.
Although in most cases the underlying technique is similar,
the sensor suite for a UAV varies across different approaches.
Researchers have used cameras [15], laser-range finders [12],
range modules [11], GPS [2], event-based cameras [10] and



Fig. 2. Experimental setup for precision landing. The quadrotor obtains
the measurements from three UWB range modules, a visual fiducial and a
GPS sensor.

inertial measurement units (IMU) to estimate the state of a
flying vehicle.

Although impressive state estimation results have been
shown using the above sensors, state-of-the-art algorithms
do not make use of the potential for self-initialization, self-
calibration, and intelligent sensor switching when combining
different sensor modalities. For example, extrinsic calibration
of the camera or other proprioceptive and exteroceptive
sensor calibration can be performed during run time as shown
for individual sensors in [4, 5, 14]. In this paper, we achieve
continuous self-calibration of the full system by estimating
additional auxiliary states that are relevant to the sensor suite.

One of the contributions of this paper is the addition of a
range sensor without the need of initialization or external
calibration. Range sensors have been used previously in
various sensor fusion approaches. Hol et al. [3] proposed
a tightly coupled UWB-IMU pose estimation system that is
able to handle outliers caused by multipath effects. In [11]
the authors fuse the UWB range measurements with IMU
measurements to estimate the pose and velocity of a quadro-
tor. Gross et al. [2] presented an approach where a differential
GPS sensor is tightly coupled with an UWB range module
for aircraft formation flights. However, none of the above
approaches performs a full self-calibration and initialization
of the system (including the position of the range modules in
the world frame). In this work, we present an initialization
method to approximate the range module position in the
world frame, and we include all the calibration states in the
state vector so that they can be estimated continuously during
flight.

Probabilistic techniques have been used to perform sensor
switching and sensor measurement validation. Leutenegger
and Siegwart [6] proposed a back-up system to handle GPS
outages for a fixed wing aircraft system. Mourikis et al. [9]
presented an approach where GPS and visual measurements
were used in different parts of the experiment. In [7] the
authors showed how relative and absolute measurements
can be handled within one EKF-based framework. In this
paper, we extend the approach from Lynen et al. [7] to be
able to detect erroneous sensors and measurement outliers.
The technique we propose performs probabilistic sensor
switching and measurement validation based on the current

conditions of both the environment and the system to select
an optimal sensor suite.

III. EXTENDED KALMAN FILTER

In order to optimally fuse multiple types of measurements,
we use a framework based on the indirect formulation of an
iterated EKF where the state prediction is driven by IMU
measurements. This treats the IMU as a core sensor, allow-
ing the division of the state vector into a computationally
efficient core part and an augmented part that includes all
additional sensors.

A. Core State

The core state consists of the following states:

xT
core = [pi

w

T
,vi

w

T
,qi

w

T
,bω

T ,ba
T ] (1)

where pi
w, vi

w and qi
w are the position, velocity and orien-

tation (represented as a quaternion) of the IMU in the world
frame. The variables bw, ba correspond to gyroscope and
accelerometer biases. Since the IMU biases can change over
time they are modeled as a random process:

ḃω = nbω
, ḃa = nba

(2)

where nbw
and nba

are each assumed to be zero-mean white
Gaussian noise.

The core state is governed by the following differential
equations:
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where C(q) corresponds to the rotation matrix obtained
from the quaternion q, Ω(ω) represents the skew symmetric
quaternion multiplication matrix of ω, am is the measured
acceleration and ωm is the angular velocity with white
Gaussian noise na and nω .

Starting from the initial state defined in Eq. 1, we define
the error state as:
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where x̃ is the error between the real state value x and the
state estimate x̂. For quaternions the error state is defined
as: δq = q⊗ q̂ ≈ [1 1

2δΘ
T ]

T .

B. State Augmentation

In addition to the core states, each sensor extends the
state vector with additional auxiliary states. These states are
sensor-dependent and correspond to the calibration param-
eters that need to be estimated to make the system fully
self-calibrating. In the following, we present the state aug-
mentation for the sensors presented in the example scenario
shown in Fig. 2.



1) GPS position sensor (3 DoF): For a GPS sensor, only
the relative position pp

i of the GPS module with respect to the
IMU is needed. Note that, since GPS provides a measurement
of the global position, the attitude between the sensor and
the IMU can be omitted. The corresponding error state is
defined as:

x̃T
gps = ∆pp

i
T
. (8)

2) Vision-based pose sensor (6 DoF): A vision-based
pose sensor requires the relative transformation between the
camera and the IMU pc

i , qc
i . In addition, since the vehicle is

localized in the global frame of the GPS, the world-relative
position and orientation of the vision frame pv

w, qv
w are

needed with respect to the world frame:
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3) Range sensor (1DoF): In order to use an on-board
range sensor in the system, the position of the range module
antenna on the vehicle pu

i is required. In addition, the
system needs to estimate the position of each external range
module that is deployed in the field. Thus, an extra state
that represents the position of each external range module
antenna in the world frame pr

w is necessary:

x̃T
range = [∆pu

i
T ,∆pr

w
T ]. (10)

4) Sensor switching and observability: The design of the
system enables the user to easily include additional sensors as
long as the auxiliary states are included and the measurement
models are defined. In fact, it is this modular design and con-
sequent inclusion of the required auxiliary states that enable
the seamless switching between different sensor modalities.
Each measurement sensor acts on its auxiliary states and the
core state; the other auxiliary are not affected by it. Since the
auxiliary states are constant over time, they are modeled to
not be affected by process noise. Consequently, the mean and
covariance of the auxiliary states that do not belong to the
current sensor measurement are not changed. For example,
the position of the vision frame pv

w remains unchanged
if there is no visual measurement. In some configurations
(e.g. given a single range measurement) there may be either
core or auxiliary states that are unobservable. In this case,
the covariance of the affected states grows until a suitable
measurement is included. A non-linear observability analysis
shows that the core state is fully observable given a GPS
measurement, visual measurement, or measurements of three
different range modules. We refer to the approach used in [5]
for a detailed discussion about the observability of all states.

In this paper, we show the example of integrating one GPS
sensor, one vision-based pose sensor, and three range sensors.
The final error state consists of the core error states (Eq. 7)
and all the auxiliary error states defined in Eqs. 8,9,10, thus:

x̃T = [x̃T
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C. Measurement Models

In the following, we present the models for the measure-
ments z. Due to our indirect formulation of the EKF, the
filter uses the measurement error z̃ which is modeled as
z̃ = z− ẑ. This can be linearized to z̃ ≈ Hx̃ where H = ∂h

∂x̃
is the Jacobian of the measurement function h with respect
to the error state x̃. For brevity, we specify the measurement
equations but omit the formulation of the H matrices.

1) GPS position: The GPS sensor returns position in the
world frame:

zgps = pi
w + CT

(qi
w)p

p
i + nzgps

(12)

where nzgps
is white Gaussian measurement noise.

2) Vision-based pose: The vision-based sensor measures
the 6 DoF pose of the camera with respect to the vision
coordinate frame. In our case, the origin of the vision
coordinate frame is defined by an artificial marker whose
world-relative position is estimated as well (see qv

w in Eq. 9).
The measurement consists of the translational part zposep and
the rotational part zposeq :[
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Similarly to other measurements, the vision-based pose mea-
surement also contains white Gaussian noise nzposep

and
nzposeq

.
3) Range: The range sensor measures the distance be-

tween two antennas, where one is on the UAV and the
other is in the field. The measurement model of this sensor
also includes the relative position of the UAV-antenna with
respect to the IMU and the position of the field-antenna in the
world frame (see pu

i and pr
w in Eq. 10). The measurement

model is:

zrange =
∥∥∥pi

w + CT
(qi

w)p
u
i − pr

w
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(14)

with Gaussian noise nzrange
.

D. Time delays

When fusing multiple sensors, one of the important chal-
lenges is the time delay between the measurements. In order
to handle the delays, we, similarly to [7], introduce a time-
sorted buffer for states and measurements. When an older
measurement occurs out of order, it is applied to the closest
state in a buffer and an updated state is propagated to the
most current time stamp. This procedure is repeated for all
old measurements to ensure that each measurement is applied
to the most up-to-date state. For more details of this approach
see [7].

IV. STATISTICAL MEASUREMENT VALIDATION

In real-world scenarios sensor measurements will often
be corrupted with noise and sparse outliers due to faults in
the sensors or changes in conditions (e.g. transitions from
outdoor to indoor). In such cases, the underlying assumption
of the EKF that the measurement residuals are Gaussian



distributed is violated, and updating the filter using such
measurements can introduce large errors into the state and
covariance estimates. Instead, it is desirable to automatically
detect outliers and remove these measurements before they
corrupt the filter. Using the probabilistic analysis described
in [1], we use a hypothesis test to automatically identify and
remove erroneous measurements in our multi-sensor fusion
framework.

The EKF formulation includes the calculation of the
measurement innovation r and its covariance S:

r = z− h(x̂) (15)

S = HPHT + R (16)

where h(x̂) is the measurement function, P is the current
covariance of the state estimate and R is the covariance of
the measurement z.

Since the residual vector r is assumed to be distributed
according to a multivariate Gaussian with covariance matrix
S, the normalized sum of squares of its values should be
distributed according to the Chi-Squared (χ2) distribution
with as many degrees of freedom as there are measurements.
We perform a one-sided hypothesis test to determine whether
the residuals are likely to have come from this distribution:

rTS−1r < χ2(0.95). (17)

The threshold on the Chi-Squared test is set to 95%. Values
above this threshold are labeled as outliers and not used to
update the filter.

The Chi-Squared test provides a modular test of measure-
ment validity. Moreover, the implementation of new sensor
modules automatically includes the probabilistic validation.

V. INITIALIZATION

In order for the filter to function correctly, the initial
state values have to be in the region of convergence of the
EKF. In addition, the corresponding initial covariance of the
state P must be estimated accordingly to capture the initial
uncertainty of the states.

Some of the states in the state vector can be easily
initialized (e.g. setting bω and ba to zero, or using a
GPS and visual measurement to determine pv

w and qv
w).

However, the initial measurement of the world-relative range
module position cannot be estimated based on the initial
measurements and it may be tedious to measure for the user.
Therefore, we facilitate the initialization process by enabling
self-initialization of the range module position in the world
frame.

A. Least Squares Solution

Since the initial position of the field module is not known
and cannot be estimated from a single measurement, an ini-
tialization strategy is needed that takes into account multiple
measurements over time to resolve the position ambiguity. In
addition, due to the non-linearity of the system, the position
of the module might be outside of the beacon of convergence
if initialized arbitrarily. We propose a set of linear equations

which enables us to solve for the world-relative field range
module position using the least squares method.

Let pu
w be the position of the UAV range module in the

world frame:
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u
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Given the fact that the range measurement can be modeled
as:
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where the right side of the equation for each dimension
results in terms of the form:

pu
wx

2 − 2pu
wxp

r
wx + pr

wx
2, (20)

the system can be linearized by grouping the quadratic terms
into a distance measure:
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Rearranging the terms in the range measurement model in
a set of linear equations of the form of Ax = b leads to:
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where z(t) represents the measurement obtained at the t-th
time stamp, zx denotes the x component of the vector z
and dp2w and dr2w correspond to the distance between the
IMU position in the world frame, and the field range module
position in the world frame, respectively.

The covariance of the parameters can be estimated [8] as:

Σx =
‖Ax− b‖2

n− k
(ATA)

−1
(23)

where n and k are the number of rows and columns of the
A matrix, which is finally used to initialize the range block
of the state covariance P.

Ppr
w

= Σpr
w
. (24)

B. Measurement Inclusion Test

One crucial aspect needed to correctly initialize the range
module position is the quality of the A matrix in the least
squares method. If the rank of the A matrix is smaller
than 4 the least squares solution will be ill conditioned
and likely incorrect. Since the A matrix consists of the
measurements and state estimates over time, we can select
which measurements and states should be included for the
final solution. Therefore, to check the quality of the least
squares solution, a measurement inclusion test is preformed.



Fig. 3. The experimental platform (Asctec Hummingbird) with all sensors
and the processing hardware.

This ensures that the motion of the vehicle was sufficient to
make the position of the range module observable. In theory,
more measurements increase the accuracy of the solution.
However, in our implementation we keep the size of the
A matrix small (15 rows) for efficiency reasons. Given this
size constraint, it is important to choose the best data points
available to correctly initialize the range module position.

In order to check if an additional row of the A matrix
(i.e. additional measurement and state estimate) improves the
solution of the least squares, we perform a matrix condition
number analysis. The condition number of a matrix is defined
as the ratio between the largest to the smallest singular value
of the matrix. Upon each range measurement, the condition
number of the current A matrix is calculated and stored.
At the next step, the condition number of the A matrix
extended by the most current linear equation is computed.
If the condition number of the matrix decreased, the row is
added to the matrix as it contributes to the final solution.

Since the computation of the condition number of the A
matrix upon each measurement is computationally expensive,
a simple test is used to gate the measurements before eval-
uation: If the traveled distance between two measurements
is below a threshold, it is discarded. This way we can avoid
adding the measurements and computing the singular value
decomposition while the vehicle is not moving.

C. Post-Initialization Test

In order to smoothly initialize the range module position
and start including range measurements into the EKF, we
must avoid abrupt changes in other parts of the state vector.
This is achieved by a post-initialization test.

Once the initial state value and its covariance are estimated
according to Eqs.22- 24, they are not immediately included
in the state. Instead, a number of Chi-Squared hypothesis
tests are performed to ensure that the range measurement
will not cause an abrupt change in the other state estimates.

If the majority of the tested measurements fail the Chi-
Squared tests, the range module position is reinitialized.
Otherwise, future range measurements are added to the EKF
state estimation.

VI. EVALUATION AND DISCUSSION

A. Experimental Setup

In the following experiments, we use an Asctec Hum-
mingbird quadrotor equipped with an UWB ranging module
(Timedomain P410), a downward looking camera (Matrix
Vision, blueFox MLC-200, 768x480, 110 degree FOV),
a GPS receiver (included in Asctec Hummingbird), and
an additional flight computer (Odroid XU3 with Samsung
Exynos5522, 2GHz) (Fig. 3). All processing, including the
state estimation, is performed on-board. In addition, we use
three Timedomain P410 UWB range modules placed arbi-
trarily in the environment. The range module measurement
is available at 30Hz and its std. dev. is equal to 0.07m. As
the vision-based pose sensor we employ a visual fiducial of
a known size which is seen by the navigation camera. In
order to estimate the pose of the vehicle from the image of
the fiducial, we use the openly available ar-track-alvar ROS
package1. The vision-based pose measurement is acquired
at 30Hz with a std. dev. of 0.02m and 0.06 radians. For all
experiments we simulate GPS by using position information
from a VICON motion capture system at 5 Hz corrupted
by white Gaussian noise with std. dev. of 0.2m, which is
the measured standard deviation of the Asctec GPS module.
However, we are aware that this simulation does not reflect
the full complexity of the true GPS signal.

B. Chi-Squared Test Evaluation

In the first experiment, we evaluated the importance of
the inclusion of the Chi-Squared test to the filter. In order to
simulate faulty measurements, we randomly added a small
error to the measurement of the visual fiducial. We chose
the error to be in the same order of magnitude as the sensor
accuracy (i.e. 0.02m) which, intuitively, the proposed signal
analysis should be able to detect as an outlier and reject. The
visual pose measurement was obtained at 30Hz and the IMU
propagation was performed at 100Hz. The error was added
randomly to 5% of all measurements.

Fig. 4 shows an example of a Chi-Squared test experiment.
The spikes in the top plot correspond to the residuals
obtained from the erroneous measurements. As shown in the
middle plot of Fig. 4, none of the erroneous measurements
passed the test and therefore, did not corrupt the state
estimates.

In order to evaluate the influence of the Chi-Squared test
on the state estimation, the error of the vehicle position with
and without performing the test is compared in Fig. 4-bottom.
The ground truth data was obtained from the motion capture
system. For the evaluation, we use the visual pose sensor
as the only sensor in the system so that the errors are not
influenced by any other source of measurements.

The position error of the system without the Chi-Squared
test is noticeably larger, especially when the erroneous
measurements were introduced (the larger errors correspond
to the spikes in Fig. 4-top and middle). The root mean
squared error (RMSE) for the filter with the Chi-Squared

1http://wiki.ros.org/ar_track_alvar
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Fig. 5. Statistics over 40 runs for the range module initialization for the
real robot experiment. The data points are depicted in red. The mean error
is equal to 0.3444m± 0.1326m.

test was equal to 0.1613, whereas the RMSE for the filter
without the Chi-Squared test was equal to 0.1659. It is worth
noting that the state drifts based on the IMU integration
when the measurement is not included (since this is the only
measurement in the filter). Despite this and the fact that
the measurement was corrupted by a small error (average
of 0.02m), the use of the Chi-Squared test has a noticeable
influence on the state estimates. Based on these results, the
Chi-Squared test was used for all of the sensors for the rest
of the experiments.

C. Range Module Initialization and Convergence Experi-
ment

To evaluate the quality of the initialization of the range
modules, we performed multiple flights and initialized each
of the three modules if sufficient information was gathered
(see Sec. V-B). Afterwards, we compared their estimated
positions to the ground truth data obtained through the
motion capture system.

Fig. 5 shows the error statistics for 40 runs of range
module position initialization that was performed on the
UAV. The average distance to the range modules during the
experiment was approximately 2m which results in an aver-
age initialization error of 17%. It is important to remember
that the quality of the initialization is highly dependent on the
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position computed with the least squares method explained in Sec. V-A. The
x-axis shows the ratio between the distance dr2w and the baseline the UAV
moved during acquiring the necessary measurements for the least squares.

motion presented to the system. In this set of experiments,
the vehicle performed an elliptical motion with a varying
radius of approximately 0.4m.

Despite the initial error of the range module position
estimate, the system was able to converge. An example of a
convergence process is shown in Fig. 6. The range module
position was initialized with an initial error of 0.32m and
it took approximately 3s to converge to the position that
resulted in a 0.08m error. Taking into account that the range
measurement std. dev. is equal to 0.07m (however, it may
be larger depending on the environment), the final error of
0.08m is acceptable. The uncertainty of the range module
position estimate is decreasing (see the blue field in Fig. 6)
which is an expected behavior of the filter.

We performed a series of simulation experiments to evalu-
ate the quality of the initialization with respect to the motion
extended to the UAV. As the UAV moves, measurements
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Fig. 8. Monte Carlo simulation for the position error of the range module
position computed with the least squares method explained in Sec. V-A.
The x-axis shows the the baseline the UAV moved during acquiring the
necessary measurements for the least squares. The error remains the same
as long as the distance dr2w is adapted such that the ratio of these two
values is constant.



of the range modules are acquired at different positions to
populate the least squares problem in Eq. 22. We define the
action radius during this initialization as baseline. Naturally,
the precision of the least squares solution is a function of
the ratio between the distance of the range module to the
UAV and the baseline. We simulated 2000 initializations
with realistic noise values for the position estimates and the
distance measurements. Fig. 7 shows the influence on the
initialization accuracy when varying this ratio. Fig. 8 shows
that the error is constant if the baseline is adapted to the range
module distance (i.e. if the ratio is constant). The simulated
accuracy is slightly below the one we observe on true data
(Fig. 5).

D. Full System Evaluation

In the last experiment, we evaluated the behavior of the
full system. The UAV performed a trajectory shown in Fig. 9-
top. During its flight time, different sensor modalities were
switched on and off to show the capabilities of the system.
The quadrotor started using GPS, visual fiducial and 3 UWB-
range sensors. The first phase of the flight consisted of circu-
lar motions in 3 dimensions to correctly initialize the range
module states (green line in Fig. 9-middle and bottom). Once
the modules were initialized, the UAV performed a square-
like figure. During this time, the visual measurements were
not acquired and the range measurements were available only
at the beginning and the end of this part of the trajectory (see
columns in Fig. 9-middle and bottom). In the final phase, the
vehicle was again using all 3 sensor modalities to accurately
land on the visual fiducial. This experiment corresponds to
the real world application where a UAV has to take off from
a landing site with a visual fiducial on it, fly away from it,
and then fly even further where the range measurements are
not available anymore. Finally, the UAV comes back to the
site, acquiring measurements from all the sensors again.

The middle part of Fig. 9 shows the position error of the
quadrotor when the system was using the Chi-Squared test.
The general tendency of the error plot is exactly as expected
- the more sensors were used, the more accurate was the state
estimation of the vehicle. It is apparent, that the sensor suite
switching happened seamlessly throughout the experiment.
One can also observe initial peaks around the 13th and
19th seconds of the execution time which correspond to the
moments when the visual fiducial was temporarily not visible
in the camera image. The last phase of the flight, when all
the sensors were used again, shows a very small and constant
position error because the visual fiducial was always in the
field of view of the camera.

In order to evaluate the effect of the Chi-Squared test in
this scenario, we executed the filter on the collected data
again without the test. The result of this run is depicted
in Fig. 9-bottom. The position error in this experiment is
much larger and contains spikes which would be fatal for a
controller. The RMSE of the system with the Chi-Squared
test is equal to 0.129m whereas without the test it is 0.193m.
The spikes in the state estimates come mainly from the
erroneous range measurements (for example, the large spike
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Fig. 9. Full system evaluation. Top: the trajectory executed by the UAV.
Middle: the position error obtained by the system with the Chi-Squared test.
Bottom: the position error obtained by the system without the Chi-Squared
test.

at 45s) but also from the vision sensor when the UAV
received a faulty measurement by seeing the fiducial from a
large distance (at 10, 15 and 20s). It is worth noting that in
the case when the Chi-Squared test was included, these visual
measurements were not applied, hence the error increased but
there were no spikes (see Fig. 9-middle). This experiment
confirms our hypothesis that the Chi-Squared test is crucial
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Fig. 10. The position error in the x dimension together with its uncertainty
calculated based on the state covariance. The data comes from the same
experiment as in Fig. 9.

for correct fusion of multiple sensors in the presence of
erroneous measurements.

Fig. 10 shows the position error in the x dimension
together with its uncertainty for the run with the Chi-Squared
test. The very initial drop of the uncertainty shows the
convergence rate of the filter. One can notice that the 3-
sigma bound of the state generally reflects the error of the
estimate. The uncertainty of the estimate is smoother when
using the GPS only due to the fact that this is the only
measurement with a constant covariance in our setup. All
the other measurements arrive with varying covariance that
is either specified by the manufacturer (the UWB range
modules) or estimated through a set of experiments (the
visual fiducial).

VII. CONCLUSIONS AND FUTURE WORK

We introduced a self-initializing and self-calibrating multi-
sensor fusion approach that is able to probabilistically switch
between sensors and uses a statistical measurement valida-
tion approach to not incorporate erroneous measurements
in the state. In particular, we showed in a series of ex-
periments that our system is able to fuse vision, GPS and
range measurements with no need for external calibration
or initialization. We evaluated different parts of the system
such as the statistical measurement validation and the range
module initialization separately to explain their influence on
the system behavior. Finally, we performed a full system
evaluation on a real UAV which showed the ability to seam-
lessly filter and switch between different sensors modalities
during run time.

As next steps, we plan to further enhance our system for
long-term UAV autonomy in outdoor missions to show its
application in larger environments.
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