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Abstract

We present a method for reinforcement learning of closely related skills that are
parameterized via a skill embedding space. We learn such skills by taking advan-
tage of latent variables and exploiting a connection between reinforcement learn-
ing and variational inference. The main contribution of our work is an entropy-
regularized policy gradient formulation for hierarchical policies, and an associ-
ated, data-efficient and robust off-policy gradient algorithm based on stochastic
value gradients. We demonstrate the effectiveness of our method on several sim-
ulated robotic manipulation tasks. We find that our method allows for discovery
of multiple solutions and is capable of learning the minimum number of distinct
skills that are necessary to solve a given set of tasks. In addition, our results
indicate that the hereby proposed technique can interpolate and/or sequence pre-
viously learned skills in order to accomplish more complex tasks, even in the
presence of sparse rewards.

1 Introduction

Recent years have seen great progress in methods for reinforcement learning with rich function
approximators, aka “deep reinforcement learning” (DRL) [25, 35, 20]. In the field of robotics, DRL
holds the promise of automatically learning flexible behaviors end-to-end while dealing with high-
dimensional, multi-modal sensor streams [1].

Despite this recent progress, the predominant paradigm remains, however, to learn solutions from
scratch for every task presented to the RL algorithm. Not only is this data-inefficient and constrains
the difficulty of the tasks that can be solved, but it also limits the versatility and adaptivity of the
systems that can be built. This is by no means a novel insight and there have been many attempts
to address this issue (e.g. [7, 33, 8, 37]). Nevertheless, the effective discovery, representation, and
reuse of skills remains an open research question.

We aim to take a step towards this goal. Our method learns manipulation skills that are continuously
parameterized in an embedding space. We show how we can take advantage of these skills for
rapidly solving new tasks, effectively by solving the control problem in the embedding space rather
than the raw action space.

Our formulation draws on a connection between entropy-regularized reinforcement learning and
variational inference (VI) (that is well established in the literature [38, 39, 42, 31, 29, 19, 10])
and is a principled and general scheme for learning hierarchical stochastic policies. We show how
stochastic latent variables can be meaningfully incorporated into policies by treating them in the
same way as auxiliary variables in parametric variational approximations in inference ([34, 22, 30]).
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The resulting policies can model complex correlation structure and multi-modality in action space.
We represent the skill embedding via such latent variables and find that this view naturally leads
to an information-theoretic regularization which ensures that the learned skills are versatile and the
embedding space is well formed.

We demonstrate the effectiveness of our method on several simulated robotic manipulation tasks.
We find that our method allows for the discovery of multiple solutions and is capable of learning
the minimum number of distinct skills that are necessary to solve a given set of tasks. Our results
indicate that the hereby proposed technique can interpolate and/or sequence previously learned skills
in order to accomplish more complex tasks, even in the presence of sparse rewards. The video of
our experiments is available at: https://goo.gl/FbvPGB.

2 Related Work

In the space of multi-task reinforcement learning with neural networks, Teh et al. [37] propose
a framework that allows sharing of knowledge across tasks via a task agnostic prior. Similarly,
Cabi et al. [4] make use of off-policy learning to learn about a large number of different tasks
while following a main task. Denil et al. [6] and Devin et al. [7] propose architectures that can be
reconfigured to solve a variety of tasks, and Finn et al. [8] use meta-learning to acquire skills that
can be fine-tuned effectively. Sequential learning and the need to retain previously learned skills
has also been the focus of a number of researchers (e.g. [18] and [33]). In this work, we present a
method that learns an explicit skill embedding space in a multi-task setting and is complementary to
these works.

Our formulation draws on a connection between entropy-regularized reinforcement learning and
variational inference (VI) (e.g. [38, 39, 42, 31, 29, 19, 10]). In particular, it considers formulations
with auxiliary latent variables, a topic studied in the VI literature (e.g. [3, 34, 30, 22]) but not
fully explored in the context of RL. The notion of latent variables in policies has been explored
e.g. by controllers [15] or options [2]. Their main limitation is the lack of a principled approach
to avoid a collapse of the latent distribution to a single mode. The auxiliary variable perspective
introduces an information-theoretic regularizer that helps the inference model by producing more
versatile behaviors. Learning versatile skills has been explored by Haarnoja et al. [12] and Schulman
et al. [36]. In particular, Haarnoja et al. [12] learn energy-based, maximum entropy policies via
soft Q-learning. Our approach similarly uses entropy-regularized reinforcement learning and latent
variables but differs in the algorithmic framework. Similar hierarchical approaches have also been
studied in the work combining RL with imitation learning [40, 24].

The works that are most closely related to this paper are [9, 27, 11] and [13, 21]. They use the same
bound that arises in our treatment of the latent variables. Hausman et al. [13] uses it to learn structure
from demonstrations, while Mohamed & Rezende [27], Gregor et al. [11] use mutual information as
an intrinsic reward for option discovery. Florensa et al. [9] follows a similar paradigm of pre-training
stochastic neural network policies, which are then used to learn a new task in an on-policy setup.
This approach can be viewed as a special case of the method introduced in this paper, where the skill
embedding distribution is a fixed uniform distribution and an on-policy method is used to optimize
the regularized objective. In contrast, our method is able to learn the skill embedding distributions,
which enables interpolation between different skills as well as discovering the number of distinct
skills necessary to accomplish a set of tasks. In addition, we extend our method to a more sample-
efficient off-policy setup, which is important for potential applications of this method to real world
environments.

3 Learning Versatile Skills

Before we introduce our method for learning a latent skill embedding space, it is instructive to
identify the exact desiderata that we impose on the acquired skills (and thus the embedding space
parameterizing them). A detailed explanation of how these goals align with recent trends in the
literature is given in Section 2.

As stated in the introduction, the general goal of our method is to re-use skills learned for an initial
set of tasks to speed up – or in some cases even enable – learning difficult target tasks in a transfer
learning setting. We are thus interested in the following properties for the initially learned skills:
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Figure 1: Schematics of our approach. We train the agent in a multi-task setup, where the task id is
given as a one-hot input to the embedding network (bottom-left). The embedding network generates
an embedding distribution that is sampled and concatenated with the current observation to serve
as an input to the policy. After interaction with the environment, a segment of states is collected
and fed into the inference network (bottom-right). The inference network is trained to classify what
embedding vector the segment of states was generated from.

i) generality: We desire an embedding space, in which solutions to different, potentially orthogonal,
tasks can be represented; i.e. tasks such as lifting a block or pushing it through an obstacle course
should both be jointly learnable by our approach.

ii) versatility: We aim to learn a skill embedding space, in which different embedding vectors that
are “close” to each other in the embedding space correspond to distinct solutions to the same task.

iii) identifiability: Given the state and action trace of an executed skill, it should be possible to
identify the embedding vector that gave rise to the solution. This property would allow us to re-
purpose the embedding space for solving new tasks by picking a sequence of embedding vectors.

Intuitively, the properties i)-ii) of generality and versatility can be understood as: “we hope to cover
as much of the skill embedding space as possible with different clusters of task solutions, within
each of which multiple solutions to the same task are represented”. Property iii) intuitively helps us
to: “derive a new skill by re-combining a diversified library of existing skills”.

3.1 Policy Learning via a Variational Bound on Entropy Regularized RL

To learn the skill-embedding we assume to have access to a set of initial tasks T = [1, . . . , T ] with
accompanying, per-task, reward functions rt(s, a), which could be comprised of different environ-
ments, variable robot dynamics, reward functions, etc.. At training time, we provide access to the
task id t ∈ T (indicating which task the agent is operating in) to our RL agent. In practice – to
obtain data from all training tasks for learning – we draw a task and its id randomly from the set
of tasks T at the beginning of each episode and execute the agents current policy π(a|s, t) in it. A
conceptual diagram presenting our approach is depicted in Appendix in Fig. 1.

For our policy to learn a diverse set of skills instead of just T separate solutions (one per task), we
endow it with a task-conditional latent variable z. With this latent variable, which we also refer to as
“skill embedding”, the policy is able to represent a distribution over skills for each task and to share
these across tasks. In the simplest case, this latent variable could be resampled at every timestep and
the state-task conditional policy would be defined as π(a|s, t) =

∫
π(a|z, s, t)p(z|t)dz. One simple

choice would be to let z ∈ 1, . . .K, in which case the policy would correspond to a mixture of K
subpolicies.

Introducing a latent variable facilitates the representation of several alternative solutions but it does
not mean that several alternative solutions will be learned. It is easy to see that the expected reward
objective does not directly encourage such behavior. To achieve this, we formulate our objective as
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an entropy regularized RL problem, i.e. we maximize:

max
π

Eπ,p0,t∈T
[ ∞∑
i=0

γi
(
rt(si, ai) + αH[π(ai|si, t)]

)∣∣∣ai ∼ π(·|s, t), si+1 ∼ p(si+1|ai, si)
]
, (1)

where p0(s0) is the initial state distribution, α is a weighting term – trading the arbitrarily scaled
reward against the entropy – and we can define R(a, s, t) = Eπ[

∑∞
i=0 γ

irt(si, ai)|s0 = s, ai ∼
π(·|s, t)] to denote the expected return for task t (under policy π) when starting from state s and
taking action a. The entropy regularization term is defined as: H[π(a|s, t)] = Eπ[− log π(a|s, t)].
It is worth noting that this is very similar to the ”entropy regularization” conventionally applied in
many policy gradient schemes (e.g. [41, 26]) but with the critical difference that it takes into account
not just the entropy of the current but also of future actions.

To apply this entropy regularization to our setting, i.e. in the presence of latent variables, extra
machinery is necessary since the entropy term becomes intractable for most distributions of inter-
est. Borrowing from the toolkit of variational inference and applying the bound from [3], we can
construct a lower bound on the entropy term from Equation (1) as (see Appendix A.3 for details):

Eπ[− log π(a|s, t)]

≥Eπ(a,z|s,t)
[
log
( q(z|a, s, t)
π(a, z|s, t)

)]
=− Eπθ(a|s,t)

[
CE
[
p(z|a, s, t)‖qψ(z|a, s)

]]
+H[pφ(z|t)] + Epφ(z|t)

[
H[πθ(a|s, z)]

]
,

(2)

where q(z|a, s, t) is a variational inference distribution that we are free to choose, and CE denotes
the cross entropy (CE). Note that although p(z|a, s, t) is intractable, a sample based evaluation of
the CE term is possible:

Eπθ(a|s,t)
[
CE
[
p(z|a, s, t)‖qψ(z|a, s)

]]
= Eπθ(a,z|s,t)

[
− log qψ(z|a, s)

]
.

This bound holds for any q. We choose q such that it complies with our desired property of identifi-
ability (cf. Section 3): we avoid conditioning q on the task id t to ensure that a given trajectory alone
will allow us to identify its embedding. The above variational bound is not only valid on a single
state, but can also be easily extended to a short trajectory segment of states sHi = [si−H , . . . , si],
where H is the segment length. We thus use the variational distribution qψ(z|a, sHi ) – parame-
terized via a neural network, which we refer to as the inference network, with parameters ψ. We
also represent the policy πθ(a|s, z) and the embedding distribution pφ(z|t) using neural networks –
with parameters θ and φ – and refer to them as policy and embedding networks respectively. The
above formulation is for a single time-step; we describe a more general formulation in the Appendix
(Section A.4).

The bound meets the desiderata from Section 3: it maximizes the entropy of the embedding given
the taskH(p(z|t)) and the entropy of the policy conditioned on the embedding Ep(z|t)H(π(a|s, z))
(thus, aiming to cover the embedding space with different skill clusters). The negative CE encour-
ages different embedding vectors z to have different effects in terms of executed actions and visited
states: Intuitively, it will be high when we can predict z from the resulting a, sH . The first two terms
in our bound also arise from the bound on the mutual information presented in [9]. We refer to the
related work section for an in-depth discussion. We highlight that the above derivation also holds for
the case where the task id is constant (or simply omitted) resulting in a bound for learning a latent
embedding space encouraging the development of diverse solutions to a single task.

Inserting Equation (2) into our objective from Equation (1) yields the variational bound

L(θ, φ, ψ) = Eπθ(a,z|s,t)
t∈T

[ ∞∑
i=0

γir̂(si, ai, z, t)
∣∣∣si+1 ∼ p(si+1|ai, si))

]
+ α1Et∈T

[
H[pφ(z|t)]

]
,

where r̂(si, ai, z, t) =
[
rt(si, ai) + α2 log qψ(z|ai, sHi ) + α3H[πθ(a|si, z)]

]
,

(3)
with split entropy weighting terms α = α1+α2+α3. Note that Et∈T

[
H[pφ(z|t)]

]
does not depend

on the trajectory.
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4 Learning an Embedding for Versatile Skills in an Off-Policy Setting

While the objective presented in Equation (3) could be optimized directly in an on-policy setting
(similar to [9]), our focus in this paper is on obtaining a data-efficient, off-policy, algorithm. The
bound presented in the previous section requires environment interaction to estimate the discounted
sums presented in the first three terms of Equation (3). These terms can, however, also be estimated
efficiently from previously gathered data by learning a Q-value function2, yielding an off-policy
algorithm.

We assume the availability of a replay buffer B (containing full trajectory execution traces icluding
states, actions, task id and reward), that is incrementally filled during training (see the appendix
for further details). In conjunction with the trajectory traces, we also store the probabilities of
each selected action and denote them with the behavior policy probability b(a|z, s, t) as well as the
behaviour probabilities of the embedding b(z|t).
Given this replay data, we formulate the off-policy perspective of our algorithm. We start with the
notion of a lower-bound Q-function that depends on both state s and action a and is conditioned on
both, the embedding z and the task id t. It encapsulates all time dependent terms from Equation (3)
and can be recursively defined as:

Qπ(si, ai; z, t) = r̂(si, ai, z, t) + γEp(si+1|ai,si)[Q
π(si+1, ai+1; z, t)]. (4)

To learn a parametric representation of Qπϕ(s, a, ; z, t), we turn to the standard tools for policy eval-
uation from the RL literature. Specifically, we make use of the recent Retrace algorithm from [28].
We refer to Section A.2 for a more detailed description of this step. Equipped with this Q-function,
we can update the policy and embedding network parameters without requiring additional environ-
ment interaction (using only data from the replay buffer) by optimizing the following off-policy
objective:

L̂(θ, φ) = Eπθ(a|z,s)
pφ(z|t)
s,t∈B

[
Qπϕ(s, a, z)

]
+ Et∈T

[
H[pφ(z|t)]

]
, (5)

which can be readily obtained by insertingQπϕ into Equation (3). To minimize this objective via gra-
dient descent, we draw further inspiration from recent successes in variational inference and directly
use the pathwise derivative of Qπϕ w.r.t. the network parameters by using the reparametrization trick
[17, 32]. This method has previously been adapted for off-policy RL in the framework of stochastic
value gradient algorithms [14] and was found to yield low-variance estimates.

For the inference network qψ(z|a, sH), minimizing equation (3) amounts to supervised learning,
maximizing:

L̂(ψ) = Eπθ(a,z|s,t)
t∈T

[ ∞∑
i=0

γi log qψ(z|a, sH)
∣∣∣si+1 ∼ pπ(si+1|ai, si)

]
, (6)

which requires sampling new trajectories to acquire target embeddings consistent with the current
policy and embedding network. We found that simply re-using sampled trajectory snippets from the
replay buffer works well empirically; allowing us to update all network parameters at the same time.
Together with our choice for learning a Q-function, this results in a sample efficient algorithm. We
refer to Section A.5.1 for the derivation of the stochastic value gradient of Equation (5).

5 Learning to Control the Previously-Learned Embedding

Once the skill-embedding is learned using the described multi-task setup, we utilize it to learn a new
skill. There are multiple possibilities to employ the skill-embedding in such a scenarion including
fine-tuning the entire policy or learning only a new mapping to the embedding space (modulating
the lower level policies). In this work, we decide to focus on the latter: To adapt to a new task we
freeze the policy network and only learn a new state-embedding mapping z = fϑ(x) via a neural
network fϑ (parameterized by parameters ϑ). In other words, we only allow the network to learn
how to modulate and interpolate between the already-learned skills, but we do not allow to change
the underlying policies.

2From the perspective of variational inference, from which we are drawing inspiration in this paper, such a
Q function can be interpreted as an amortized inference network estimating a log-likelihood term.
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6 Experimental Results

Our experiments aim to answer the following questions: (1) Can our method learn versatile skills?
(2) Can it determine how many distinct skills are necessary to accomplish a set of tasks? (3) Can
we use the learned skill embedding for control in an unseen scenario? (4) Is it important for the
skills to be versatile to use their embedding for control? (5) Is it more efficient to use the learned
embedding rather than to learn to solve a task from scratch? We evaluate our approach in two
domains in simulation: a point mass task to easily visualize different properties of our method and
a set of challenging robot manipulation tasks. Our implementation uses 16 asynchronous workers
interacting with the environment, and synchronous updates utilizing the replay buffer data.

6.1 Didactic Example: Multi-Goal Point Mass Task with Sparse Rewards

The didactic example consists of a point mass that is rewarded for being in a goal region. In partic-
ular, we consider a case where there are four goals, that are located around the initial location (see
Fig. 2 left and middle) and each of them is equally important (the agent obtains the same reward at
each location) for a single task (T = 1). This leads to a situation where there exist multiple optimal
policies for a single task. In addition, this task is challenging due to the sparsity of the rewards
– as soon as one solution is discovered, it is difficult to keep exploring other goals. Due to these
challenges, most existing DRL approaches would be content with finding a single solution. For
this experiment, we consider both, a Gaussian embedding space as well as a multivariate Bernoulli
distribution (which we expect to be more likely to capture the multi-modality of the solutions).

The left part of Fig. 2 presents the versatility of the solutions when using the multivariate Bernoulli
(left) and Gaussian (middle) embedding. The multivariate Bernoulli distribution is able to discover
all four solutions, whereas the Gaussian embedding focuses on discovering different trajectories that
lead to only two of the goals.
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Figure 2: Left, middle: resulting trajectories that were generated by different distributions used for
the skill-embedding space: multivariate Bernoulli (left), Gaussian (middle). The contours depict
the reward gained by the agent. Note that there is no reward outside the goal region. Right: KL-
divergence between the embedding distributions produced by task 1 and other three tasks. Task 1
and 3 have different task ids but are they are exactly the same tasks. Our method is able to discover
that task 1 and 3 can be covered by the same embedding, which corresponds to the minimal KL-
divergence between their embeddings.

In order to evaluate whether our method can determine the number of distinct skills that are neces-
sary to accomplish a set of tasks, we conduct the following experiment. We set the number of task
to four (T = 4) but we set two of the tasks to be exactly the same (t = 1 and t = 3). Next, we use
our method to learn skill embeddings and evaluate how many distinct embeddings it learns. The re-
sults in Fig. 2-right show the KL divergence between learned embedding distributions over training
iterations. One can observe that the embedding network is able to discover that task 1 and 3 can be
represented by the same skill embedding resulting in the KL-divergence between these embedding
distribution being close to zero (KL(p(z|t1)||p(z|t3)) ≈ 0)). This indicates that the embedding
network is able to discover the number of distinct skills necessary to accomplish a set of tasks.

We present another didactic example demonstrating versatility of different solutions with the Gaus-
sian embedding in the Appendix A.6.
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Figure 3: Left: visualization of the sequence of manipulation tasks we consider. Top row: spring-
wall, middle row: L-wall, bottom row: rail-push. The left two columns depict the two initial skills
that are learned jointly, the rightmost column depicts the transfer task that should be solved using
the previously acquired skills. Right: Trajectories of the block in the plane as manipulated by the
robot. The trajectories are produced by sampling a random embedding vector trained with (red) and
without (black) the inference network from the marginal distribution over the L-wall pre-training
tasks every 50 steps and following the policy. Dots denote points at which the block was lifted.

6.2 Control of the Skill Embedding for Manipulation Tasks

Next, we evaluate whether it is possible to use the learned skill embedding for control in an unseen
scenario. We do so by using three simulated robotic manipulation tasks depicted in Fig. 3 and
described below. The video of our experiments is available at: https://goo.gl/FbvPGB.

Spring-wall. A robotic arm is tasked to bring a block to a goal. The block is attached to a string that
is attached to the ground at the initial block location. In addition, there is a short wall between the
target and the initial location of the block, requiring the optimal behavior to pull the block around
the wall and hold it at the goal location. The skill embedding used for learning this skill was learned
on two tasks: bringing a block attached on a spring to a goal location (without a wall in between)
and bringing a block to a goal location with a wall in between (without the spring). In order to
successfully learn the new spring-wall skill, the skill-embedding space has to be able to interpolate
between the skills it was originally trained on.

L-wall. The task is to bring a block to a goal that is surrounded by an L-shaped wall (see Fig. 3). The
robot needs to learn how to push the block around the L-shaped wall to get to the target location. The
skill embedding space used for learning this skill was learned on two tasks: push a block to a goal
location (without the L-shaped wall) and lift a block to a certain height. The block was randomly
spawned on a ring around the goal location that is in the center of the workspace.

Rail-push. The robot is tasked to first lift the block along the side of a white table that is firmly
attached to the ground and then, to push it towards the center of the table. The initial lifting motion
of the block is constrained as if the block was attached to a pole (or an upwards facing rail). This
attachment is removed once the block reaches the height of the table. The skill embedding space
was learned using two tasks: lift up the block attached on a rail (without the table in the scene) and
push a block initialized on top of the table to its center.

The spring-wall and L-wall tasks are performed in a setting with sparse rewards (where the only
reward the robot can obtain is tied to the box being inside a small region near a target location);
making them very challenging exploration problems. In contrast, the rail-push task (due to its se-
quential nature as well as the fact that the table acts as an obstacle) uses minor reward shaping
(where we additionally reward the robot based on the distance of the box to the center of the table).
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Fig. 4 shows the comparison between our method and various baselines: i) learning the transfer task
from scratch, ii) learning the mapping between states and the task id (t) directly without a stochastic
skill-embedding space, iii) learning the task by controlling the skill-embedding that was trained
without variational-inference-based regularization (no inference net).

In the spring-wall task, our approach has an advantage especially in the initial stages of training but
the baseline without the inference network (no-KL in the plot) is able to achieve similar asymptotic
performance. This indicates that this task does not require versatile skills and it is sufficient to find
an embedding in between two skills that is able to successfully interpolate between them.

For the more challenging L-wall task, our method is considerably more successful than all the base-
lines. The agent has to discover an embedding that allows the robot to push the block along the
edge of the white container - a behavior that is not directly required in any of the pre-training tasks.
However, as it turns out, many successful policies for solving the lift task push the block against the
wall of the container in order to perform a scooping motion. The agent is able to discover such a
skill embedding and utilize it to push the block around the L-shaped wall.

In order to investigate why the baselines are not able to find a solution to the L-wall task, we explore
the embedding space produced by our method as well as by the no-inference-network baseline. In
particular, we sample a random embedding vector from the marginal embedding distribution over
tasks and keep it constant to generate a behavior. The resulting trajectories of the block are visualized
in Fig. 3-right. One can observe that the additional regularization causes the block trajectories to be
much more versatile, which makes it easier to discover a working embedding for the L-wall task.

It is worth noting that the rail task used for initial training of the rail lift skill does not include the
table. For the transfer task we, however, require the agent to find a skill embedding that is able to
lift the block such that the arm is not in collision with the previously unseen table. As shown in the
rightmost plot of Fig. 4, such an embedding is only discovered using our method. This indicates that
due to the versatility of the learned skills, the agent is able to discover an embedding that avoids the
collision with the previously unseen table and accomplishes the task successfully. The consecutive
images of the final policies for all three tasks are presented in Appendix in Fig. 6.
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Figure 4: Comparison of our method against different training strategies for our manipulation tasks:
spring-wall, L-wall, and rail-push.

7 Conclusions

We presented a method that learns manipulation skills that are continuously parameterized in a
skill embedding space, and takes advantage of these skills by solving a new control problem in the
embedding space rather than the raw action space. Our experiments indicate that our method allows
for discovery of multiple solutions and is capable of learning the minimum number of distinct skills
that are necessary to solve a given set of tasks. In addition, we showed that our technique can
interpolate and/or sequence previously learned skills in order to accomplish more complex tasks,
even in the presence of sparse rewards.
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A Appendix

A.1 Preliminaries

We perform reinforcement learning in Markov decision processes (MDP). We denote with s ∈
RS the continuous state of the agent; a ∈ RA denotes the action vector and p(st+1|st, at) the
probability of transitioning to state st+1 when executing action at in st. Actions are drawn from
a policy distribution πθ(a|s), with parameters θ; in our case a Gaussian distribution whose mean
and diagonal covariance are parameterized via a neural network. At every step the agent receives a
scalar reward r(st, at) and we consider the problem of maximizing the sum of discounted rewards
Eτπ [

∑∞
t=0 γ

tr(st, st)].

A.2 Off-policy Learning Details

As described in the main paper we make use of the recent Retrace algorithm from [28], which
allows us to quickly propagate entropy augmented rewards across multiple time-steps while – at the
same time – minimizing the bias that any algorithm relying on a parametric Q-function is prone to.
Formally, we fit Qπϕ by minimizing the squared loss:

min
ϕ

EB
[(
Qπϕ(si, ai; z, t)−Qret)2],with

Qret =

∞∑
j=i

(
γj−i

j∏
k=i

ck

)[
r̂(sj , aj , z, t) + Eπ(a|z,s,t)[Qbϕ′(si, ·; z, t)]−Qbϕ′(sj , aj ; z, t)

]
,

ck = min
(
1,
π(ak|z, sk, t)p(z|t)
b(ak|z, sk, t)b(z|t)

)
,

(7)

where we compute the terms contained in r̂ by using rt and z from the replay buffer and re-compute
the (cross-)entropy terms. Here, ϕ′ denotes the parameters of a target Q-network3 [25] that we
occasionally copy from the current estimate ϕ, and ck are the per-step importance weights. Further,
we bootstrap the infinite sum after N -steps with Eπ

[
Qπϕ′(sN , ·; zN , t)

]
instead of introducing a λ

parameter as in the original paper [28].

A.3 Variational Bound Derivation

In order to introduce an information-theoretic regularization that encourages versatile skills, we bor-
row ideas from the variational inference literature. In particular, in the following, we present a lower
bound of the marginal entropyH(p(x)), which will prove useful when applied to the reinforcement
learning objective in Sec. 3.1.
Theorem 1. The lower bound on the marginal entropyH(p(x)) corresponds to:

H(p(x)) ≥
∫ ∫

p(x, z) log(
q(z|x)
p(x, z)

dz)dx, (8)

where q(z|x) is the variational posterior.

Proof.

H(p(x)) =
∫
p(x) log(

1

p(x)
)dx =

∫
p(x) log(

∫
q(z|x) 1

p(x)
dz)dx

=

∫
p(x) log(

∫
q(z|x) p(z|x)

p(x, z)
dz)dx ≥

∫
p(x)

∫
p(z|x) log( q(z|x)

p(x, z)
dz)dx

=

∫ ∫
p(x, z) log(

q(z|x)
p(x, z)

dz)dx. (9)

3Note it will thus evaluate a different policy than the current policy π, here denoted by b. Nonetheless by
using importance weighting via ck we are guaranteed to obtain an unbiased estimator in the limit.
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A.4 Derivation for Multiple Timesteps

We represent the trajectory as τ = (s0, a0, s1, a1, . . . , sT ) and the learned parametrized posterior
(policy) as πθ(τ) = p(s0)

∏T−1
i=0 πθ(ai|si)p(si+1|si, ai). The learned inference network is rep-

resented by qφ(z|τ) and we introduce the pseudo likelihood that is equal to cumulative reward:
log p(R = 1|τ) =

∑
t r(st, at).

In this derivation we also assume the existence of a prior over trajectories of the form: µ(τ) =

p(s0)
∏T−1
i=0 µ(ai|si)p(si+1|si, ai). where µ represents our ”prior policy”. We thus consider the

relative entropy between π and µ. Note that we can choose prior policy to be non-informative (e.g.
a uniform prior over action for bounded action spaces).

With these definitions, we can cast RL as a variational inference problem:

L = log

∫
p(R = 1|τ)µ(τ)dτ ≥

∫
π(τ) log

p(R = 1|τ)µ(τ)
π(τ)

dτ

=

∫
π(τ) log p(R = 1|τ)dτ +

∫
π(τ) log

µ(τ)

π(τ)
dτ

= Eπ[
∑
t

r(st, at)] + Eπ

[∑
t

log
µ(at|st)
π(at|st)

]

= Eπ[
∑
t

r(st, at)] + Eπ

[∑
t

KL[πt||µt]

]
= L, (10)

We can now introduce the latent variable z that forms a Markov chain:

π(τ) =

∫
π(τ |z)p(z)dz

=

∫
p(s0)p(z0)

T−1∏
i=0

π(ai|si, zi)p(si+1|si, ai)p(zi+1|zi)dz1:T . (11)

Applying it to the loss, we obtain:

L = Eπ[
∑
t

r(st, at)] + Eπ[KL[π(τ)||µ(τ)]]

= Eπ[
∑
t

r(st, at)] + Eπ
[
log

µ(τ)∫
π(τ |z1:T )p(z1:T )dz1:T

dτ

]

≥ Eπ[
∑
t

r(st, at)] + E
π(τ)

E
p(z1:T |τ)

[∑
t

∫
π(a′t|st, zt) log

µ(a′t|st)
π(a′t|st, zt)

da′t + log
q(z1:T |τ)
p(z1:T )

]
.

(12)

Equation (12) arrives at essentially the same bound as that in Equation (2) but for sequences. The
exact form of (12) in the previous equation depends on the form that is chosen for q. For instance,
for q(z|τ) = q(zT |τ)q(zT−1|zT , τ)q(zT−2|zT−1, τ) . . . we obtain:

Eπ

[∑
t

log
µ(at|st)
π(at|st, zt)

+ log
q(z1:T |τ)
p(z1:T )

]

=Eπ

[∑
t

log
µ(at|st)
π(at|st, zt)

+

T∑
t=1

log
q(zt−1|zt, τ)
p(zt+1|zt)

+ log q(zT |τ)− log p(z0)

]
. (13)

Other forms for q are also feasible, but the above form gives a nice temporal decomposition of the
(augmented) reward.
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A.5 Algorithm details

A.5.1 Stochastic Value Gradient for the policy

We here give a derivation of the stochastic value gradient for the objective from Equation (5) that
we use for gradient based optimization. We start by reparameterizing the sampling step z ∼ pφ(z|t)
for the embedding as gφ(t, εz), where εz is a random variable drawn from an appropriately cho-
sen base distribution. That is, for a Gaussian embedding we can use a normal distribution [17, 32]
εz ∼ N (0, I), where I denotes the identity. For a Bernoulli embedding we can use the Concrete dis-
tribution reparametrization [23] (also named the Gumbel-softmax trick [16]). For the policy distribu-
tion we always assume a Gaussian and can hence reparameterize using gθ(t, εa) with εa ∼ N (0, I).
Using a Gaussian embedding we then get the following gradient for the the policy parameters θ

∇θL̂(θ, φ) = ∇θ

[
Eπθ(a|z,s)
pφ(z|t)
s,t∈B

[
Qπϕ(s, a, z)

]
+ Et∈T

[
H[pφ(z|t)]

]]
,

= Eεa∼N (0,I)
εz∼N (0,I)
s,t∈B

[
∇θ Qπϕ(s, gθ(t, εa), gφ(t, εz))∇θgθ(t, εa)

]
,

(14)

and, for the embedding network parameters,

∇φL̂(θ, φ) = ∇φ

[
Eπθ(a|z,s)
pφ(z|t)
s,t∈B

[
Qπϕ(s, a, z)

]
+ Et∈T

[
H[pφ(z|t)]

]]
,

= Eεa∼N (0,I)
εz∼N (0,I)
s,t∈B

[
∇φ Qπϕ(s, gθ(t, εa), gφ(t, εz))∇φgφ(t, εz)

]
+ Et∈T

[
∇φH[pφ(z|t)]

]
.

(15)

A.6 Another Didactic Example

The second didactic example consists of a force-controlled point mass that is rewarded for being in a
goal region. In order to learn the skill embedding, we use two tasks (T = 2), with the goals located
either to the left or to the right of the initial location.

Fig. 5-bottom compares a set of trajectories produced by our method when conditioned on different
Gaussian skill embedding samples with and without the variational-inference-based regularization.
The hereby introduced cross-entropy term between inference and embedding distributions intro-
duces more variety to the obtained trajectories, which can be explained by the agent’s incentive to
help the inference network. Fig. 5-top presents the absolute error between the actual and the inferred
skill embedding for both tasks. It is apparent that the trajectories generated with regularization, dis-
play more variability and are therefore easily distinguishable. The constant residual error shown in
the top left part of the figure corresponds to the fact that the inference network without regularization
can only predict the mean of the embedding used for generating the trajectories.

A.7 Implementation Details

A.7.1 Task Structure

All the tasks presented in Sec. 6.2 share a similar structure, in that the observation space used for the
pre-trained skills and the observation space used for the final task are the same. For all three tasks,
the observations include: joint angles (6) and velocities (6) of the robot joints, finger joints positions
(3) and velocities (3), position of the endeffector (3), position (3), orientation (4) and linear velocity
(3) of the block as well as the position of the goal (3). The action space is also the same across all
tasks and consists of joint torques for all the robot joints including the hand (9). We choose such a
structure (making sure that the action space matches and providing only proprioceptive information
to the policy) to make sure we i) can transfer the policy between tasks directly; 2) to ensure that the
only way the agent is informed about changing environment dynamics (e.g., the attachment of the
block to a string, the existence of a wall, etc.) is through the task id.
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Figure 5: Bottom: resulting trajectories for different 3D embedding values with (right) and without
(left) variational-inference-based regularization. The contours depict the reward gained by the agent.
Top: Absolute error between the mean embedding value predicted by the inference network and the
actual mean of the embedding used to generate these trajectories. Note that every error curve at the
top corresponds to a single trajectory at the bottom.

The rationale behind having the same observation space between the pre-trained skills and the final
task comes from the fact that currently, our architecture expects the same observations for the final
policy over embeddings and the skill subpolicies. We plan to address this limitation in future work.

A.7.2 Network Architecture and Hyperparameters

The hereby presented values were used to generate results for the final three manipulation tasks
presented in Sec. 6.2. For both policy and inference network we used two-layer fully connected
neural networks with exponentiaded linear activations [5] (for layer sizes see table) to parame-
terize the distribution parameters. As distributions we always relied on a gaussian distribution
N (µθ(x), diag(σ(x))) whose mean and diagonal covariance are parameterized by the policy net-
work via [mu(x), log σ(x)] = fθ(x). For the embedding network the mapping from one-hot task
vectors to distribution parameters is given via a linear transformation. For the inference network we
map to the parameters of the same distribution class via another neural network.

Figure 6: Final policy for all three tasks: spring-wall (top), L-wall (middle), rail-push (bottom).
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Hyperparameter Spring-wall L-wall Rail-push
State dims 34 34 34

Action dims 9 9 9
Policy net 100-100 100-100 100-100

Q function net 200-200 200-200 200-200
Inference net 100-100 100-100 100-100

Embedding distribution 3D Gaussian 3D Gaussian 3D Gaussian
Minibatch size (per-worker) 32 32 32

Replay buffer size 1e5 1e5 1e5
α1 10−4 10−4 10−4

α2 10−5 10−5 10−5

α3 10−4 10−4 10−4

Discount factor (γ) 0.99 0.99 0.99
Adam learning rate 10−4 10−4 10−4

Table 1: Hyperparameters used in the experiments.
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