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I. INTRODUCTION

Despite significant progress in active perception methods,
one of the greatest challenges toward full flight autonomy
of UAVs remains the high-speed flight in unknown and
unstructured environments.

Leveraging the richer representation of occupancy in
confidence-aware maps [1], we address the problem of plan-
ning high-speed motions in unknown environments. While
considering the future map uncertainty, the proposed simulta-
neous mapping and planning framework (SMAP) actively re-
duces the number of surprises, i.e. when the system observes
an element of the environment that it did not consider before,
leading to fewer trajectory re-planning steps and faster flight
with better predictability and higher safety.

The key contributions of our approach are:
• A thorough analysis of a probabilistic safety measure

for trajectories.
• Incorporating the confidence-rich map representation

into a planning framework that considers future map
predictions.

• A novel cost function that utilizes the estimate of the
covariance of the map, and enables faster and safer
plans.

II. BACKGROUND AND PROBLEM FORMULATION

A. Confidence-rich maps

A confidence-rich map [1] is an alternative map represen-
tation for occupancy grid mapping which not only stores the
expected occupancy but the probability distribution of such
estimate in every voxel.

This richer map representation has several advantages over
traditional occupancy grids: (i) it relaxes the assumption of
fully independent voxels and considers the coupling between
voxel occupancies along the measurement ray, (ii) it obviates
the hand-engineering of an inverse sensor model and instead
proposes the sensor cause model which can be derived from
the forward sensor model, and most importantly, (iii) it pro-
vides consistent confidence values over occupancy estimates
that can be used in planning to compute safer trajectories.

The complete mapping problem is defined as estimating
the map m based on obtained depth measurements and
robot poses. We denote the sensor measurement at the k-
th time step by zk and the sensor configuration at the
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k-th time step as xvk. By formulating the problem in a
Bayesian framework, we compress the information obtained
from past measurements z0:k = {z0, · · · , zk} and xv0:k =
{xv0, · · · , xvk} to create a probability distribution (belief) of
the map m, i.e., b̄mk = p(m|z0:k, xv0:k). Due to challenges
in storing and updating such a high-dimensional belief, grid
mapping methods typically start from individual cells such
that the map probability density function (pdf) is represented
by the collection of individual voxel pdfs (marginal pdfs),
instead of the full joint pdf.

In [1] a method was proposed to recursively compute these
marginals while taking into account the correlation between
nearby cells. Here, we abstract this mapping mechanism to:

bm
i

k+1 = τm
i

(bmk , zk+1, xvk+1) (1)

where τ (mapper) updates the current belief of the i-th voxel
based on the last measurement and all surrounding voxels.

B. Trajectory Representation and Optimization

Similar to [2] and [3], we represent a trajectory by a piece-
wise polynomial x(t) (see [4] for more details).

Since the system can be undetermined with a sufficiently
high polynomial degree, we can use the left null-space of the
constraint matrix as the optimization space. This converts
an optimization problem over the space of waypoint- and
continuity-satisfying piece-wise polynomials from a con-
strained problem into a smaller, unconstrained problem over
the null-space weights r.

III. REACHABILITY

A. Traditional Measure of Reachability

The reachability R of a trajectory x can be computed as
follows:

R = Pr(S1, S2, · · · , Sn) (2)

where, Si denotes the event of surviving voxel i, while the
trajectory is assumed to intersect with voxels 1, 2, · · · , n in
the map. Using Bayes rule the reachability is computed as

R = Pr(S1) Pr(S2|S1) · · ·Pr(Sn|Sn−1, · · · , S1) (3)

To survive the whole path, the robot needs to survive every
one of these voxels, which leads to:

R =

n∏
i=1

(
1−mi

)
, (4)

where mi is the density of the i-th voxel. This is the
traditional measure used in reachability calculations [5].



B. Reachability as a Product Integral
Reachability, as defined in Eq. 4, describes the binary case

in which a robot can either be at voxel i or not. Hence,
this measure is only informed based on the occupancy of
intersecting voxels without taking into account what fraction
of a voxel has been traversed. However, interpreting the
voxel occupancy as a density provides a physically more
accurate representation of the environment: if we subdivide
a three-dimensional voxel with occupancy 0.5 into 8 smaller
voxels, they have, without taking further information into
account, the same density. Traversing the original (larger)
voxel should therefore yield the same reachability as if the
smaller voxels were traversed in the same way. In contrast to
this interpretation, surviving the larger voxel would have a
higher probability (0.5) than traversing its subdivided voxels
(e.g. 0.25 if traversing along one dimension) as the voxel
reachabilities are multiplied based on the traditional measure
of reachability. To resolve this issue, we propose a new
interpretation of reachability that accounts for the fraction
of the voxel which was traversed by the robot following the
trajectory.

We assume time to be continuous such that Eq. 4 is
represented by the product integral

∏T
0 (1−m(x(t)))

dt.
By choosing n intermediate points at small time steps ti
(i = 0..n; 0 ≤ ti ≤ T ) with constant time interval ∆t, this
product integral is computed as:

Rt(x) = lim
∆t→0

n∏
i=0

(1−m(x(ti)))
∆t (5)

The continuous reachability representation must consider
the distance travelled through a voxel which requires a
geometric reformulation of the trajectory. The arc-length
travelled along trajectory x(t) can be approximated by
sampling at sufficiently narrow time steps ti such that the
reformulation of reachability is as follows:

R(x) ≈ lim
∆t→0

n∏
i=0

(1−m(x(ti)))
||x(ti)−x(ti+∆t)|| (6)

IV. MAP PREDICTION USING CONFIDENCE-RICH MAPS

A common practice in the belief space planning literature
is to use the most likely future observations as the representa-
tive of the future observations to reason about the evolution
of belief. Let us denote the most likely observation at the
n-th step by:

zml
n = arg max

z
p(z|bmn , xvn) (7)

Using the most likely observations, we can compute most
likely future map beliefs:

bm
i,ml

n+1 = τ i(bm,ml
n , zml

n+1, xvn+1), n ≥ k (8)

where, bm
i,ml

k = bm
i

k .
These quantities can be used to compute the mean and

the variance of the future reachability and therefore, serve
as good measures of the final cost function that incorporates
the active component into high-speed trajectory planning. For
more details on map prediction, see [1].

V. COST FUNCTION FOR HIGH-SPEED SAFE
TRAJECTORIES

By treating the reachability of a trajectory as a product of
random variables representing the individual voxel reachabil-
ities from which the mean and the variance of reachability
can be derived [4], we aim to find a measure that combines
the two in a principled manner to obtain a utility function
for reliable high-speed trajectories.

Resulting from the theory on multi-armed bandit prob-
lems, the Lower Confidence Bound (LCB) [6] is a commonly
used metric to drive a no-regret decision making strategy.
Similarly, our objective is to find the safest trajectory by
combining the reachability estimate and our confidence in it,
which can be formulated as follows:

LCB(x) = E[R(x)]− κσ[R(x)]. (9)

When incorporating the standard deviation into our objec-
tive, we are able to avoid regions where pure reachability-
based methods would be overconfident by ignoring the high
uncertainty of the reachability estimate.

A. Algorithm Summary

The proposed method instructs the robot to follow the
current trajectory x parameterized by r, take measurements
and update the belief map [4]. This process continues until
the time limit has been reached or the reachability of the next
k trajectory positions x(t),x(t + ∆t), . . . ,x(t + k∆t) falls
below a predefined threshold 1−ε. In this case, re-planning is
triggered and the trajectory optimization step maximizes the
Lower Confidence Bound through simulation of trajectories
while taking most likely observations (Eq. 7) and updating
an imaginary map bm,ml (Eq. 8).

VI. SIMULATION EXPERIMENTS

We evaluate the proposed method in a simulated environ-
ment where two rectangular obstacles form a tunnel which
the robot has to traverse in order to reach the goal. The robot
is equipped with a depth camera which always points forward
along the robot’s trajectory, and utilizes 16 horizontally
arranged range sensors that span a field of view of 90◦.
The voxels have a side length of 0.1m and are arranged
in a 20×20 grid. Measurements are perturbed by zero-mean
Gaussian noise with std dev σ = 0.2m.

As a baseline for comparison, we set κ from Eq. 9 to 0,
causing the optimization based on LCB to become a pure
reachability-based maximization. This method is compared
to our LCB-based optimization using different values for κ
on various metrics. Besides the consideration of reachability
of the remaining part of the trajectory (Fig. 1 center), we
compare the two methods by the measure of surprise:

∆E[R(x(t))] =
∣∣∣E[R(x(t))]− E[R(x(t−∆t))]

∣∣∣ (10)

which is computed at every time step.
As shown in Fig. 1, the trajectory that is solely optimized

for reachability makes a sharp turn before entering the tunnel,
which not only slows down the robot but also increases
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Fig. 1. Evaluation of pure reachability-based trajectory optimization vs. Lower Confidence Bound (LCB) as cost function with different κ parameters.
Left: the obstacles (grey) and trajectories with measurement positions (dots along solid lines). Middle: the expected reachability of the remaining course
of the trajectory starting from current time step t. Right: the surprise in reachability (Eq. 10) at time t.

the “surprise” since most of the remaining path is hidden
behind the corner. Optimizing for the lower confidence
bound resolves both issues: the robot makes a wider turn
to reduce estimation uncertainty which allows faster trajec-
tory execution and a significant reduction in surprise. Not
only does our method outperform the reachability baseline
w.r.t. surprise, but the overall expected reachability of the
remaining trajectory is better most of the time as well.

Fig. 2. Number of necessary stops for re-planning until the goal is reached
(top) and total time for trajectory execution (bottom) over different values
for κ (ranging from 0 to 2) in the environment from Fig. 1. Due to the
stochasticity of the range sensor measurements and the compounding effects
on the map belief and the generated trajectories, 5 sample runs have been
simulated for every value of κ and reported in these two box plots.

Besides generating safer trajectories, the LCB-measure as
basis for trajectory optimization also yields fewer stops for

re-planning as well as faster traversal times. As shown in
Fig. 2, compared to pure reachability-based planning, the
proposed method utilizing a Lower Confidence Bound with
κ > 0 led to a reduction in re-planning stops of up to 70%
and a speed-up in traversal time by up to 34%.

VII. CONCLUSION

We present a method that enables planning of high-speed
and safe motions through confidence-rich maps. Specifically,
we predict the future uncertainty of the confidence-rich map
and optimize trajectories with minimum surprise in reach-
ability. Besides faster and safer trajectories, simulation ex-
periments indicate that the presented trajectory optimization
method leads to fewer re-planning stops than the traditional
reachability-based optimization.
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